

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI TTA, TTC) Page 1 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

This Specification is provided for future development work within oneM2M only. The Partners accept no

liability for any use of this Specification.

The present document has not been subject to any approval process by the oneM2M Partners Type 1.

Published oneM2M specifications and reports for implementation should be obtained via the oneM2M

Partners' Publications Offices.

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI TTA, TTC) Page 2 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

About oneM2M

The purpose and goal of oneM2M is to develop technical specifications which address the

need for a common M2M Service Layer that can be readily embedded within various

hardware and software, and relied upon to connect the myriad of devices in the field with

M2M application servers worldwide.

More information about oneM2M may be found at: http//www.oneM2M.org

Copyright Notification

No part of this document may be reproduced, in an electronic retrieval system or otherwise,

except as authorized by written permission.

The copyright and the foregoing restriction extend to reproduction in all media.

© 2016, oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC).

All rights reserved.

Notice of Disclaimer & Limitation of Liability

The information provided in this document is directed solely to professionals who have the

appropriate degree of experience to understand and interpret its contents in accordance with

generally accepted engineering or other professional standards and applicable regulations.

No recommendation as to products or vendors is made or should be implied.

NO REPRESENTATION OR WARRANTY IS MADE THAT THE INFORMATION IS

TECHNICALLY ACCURATE OR SUFFICIENT OR CONFORMS TO ANY STATUTE,

GOVERNMENTAL RULE OR REGULATION, AND FURTHER, NO

REPRESENTATION OR WARRANTY IS MADE OF MERCHANTABILITY OR

FITNESS FOR ANY PARTICULAR PURPOSE OR AGAINST INFRINGEMENT OF

INTELLECTUAL PROPERTY RIGHTS. NO oneM2M PARTNER TYPE 1 SHALL BE

LIABLE, BEYOND THE AMOUNT OF ANY SUM RECEIVED IN PAYMENT BY

THAT PARTNER FOR THIS DOCUMENT, WITH RESPECT TO ANY CLAIM, AND IN

NO EVENT SHALL oneM2M BE LIABLE FOR LOST PROFITS OR OTHER

INCIDENTAL OR CONSEQUENTIAL DAMAGES. oneM2M EXPRESSLY ADVISES

ANY AND ALL USE OF OR RELIANCE UPON THIS INFORMATION PROVIDED IN

THIS DOCUMENT IS AT THE RISK OF THE USER.

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI TTA, TTC) Page 3 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Contents

1 Scope .. 6

2 References .. 6
2.1 Normative references ... 6
2.2 Informative references ... 6

3 Definitions, symbols and abbreviations ... 7
3.1 Definitions ... 7
3.2 Symbols ... 8
3.3 Abbreviations ... 8

4 Conventions .. 8

5 Use Cases ... 8
5.1 Use Case for Access Token in Dynamic Authorization ... 8
5.1.1 Description ... 8
5.1.2 Actors ... 9
5.1.3 Pre-conditions .. 9
5.1.4 Normal Flow .. 9
5.1.5 Potential requirements .. 10
5.2 Use Case for Role Token in Dynamic Authorization .. 10
5.2.1 Description ... 10
5.2.2 Actors ... 11
5.2.3 Pre-conditions .. 12
5.2.4 Normal Flow .. 12
5.2.5 Potential requirements .. 12
5.3 Use case of Dynamic Authorization Policy Provisioning .. 12
5.3.1 Description ... 12
5.3.2 Actors ... 13
5.3.3 Pre-Conditions.. 13
5.3.4 Normal Flow .. 13
5.3.5 Potential Requirements .. 13
5.4 Use case of Dynamic Authorization .. 14
5.4.1 Description ... 14
5.4.2 Actors ... 14
5.4.3 Pre-Conditions.. 14
5.4.4 Normal Flow .. 14
5.4.5 Potential Requirements .. 15
5.5 Use case of Dynamic Authorization .. 15
5.5.1 Description ... 15
5.5.2 Actors ... 15
5.5.3 Pre-Conditions.. 16
5.5.4 Normal Flow .. 16
5.5.5 Potential Requirements .. 17

6 High Level Architecture ... 17
6.1 Review of existing frameworks ... 17
6.1.1 Introduction .. 17
6.1.2 OAuth 2.0 ... 17
6.1.3 User Managed Access (UMA) ... 18
6.1.4 OpenID Connect ... 20
6.2 Dynamic Authorization Architecture Proposal (DAA1) Reference Model ... 20
6.2.1 Overall Description .. 20
6.2.2 DAA1 Functional Roles ... 22
6.2.2.1 Originator ... 22
6.2.2.2 Grant Issuer .. 23
6.2.2.3 Grant Approver ... 23
6.2.2.4 Authorization Server... 23
6.2.2.5 Host CSE .. 24

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI TTA, TTC) Page 4 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

6.2.3 DAA1 Reference Points ... 24
6.2.3.1 DAA1 Authorization Grant Issuance (Dagi) Reference Point .. 24
6.2.3.2 DAA1 Authorization Grant Approval (Daga) Reference Point .. 25
6.2.3.3 DAA1 Access Token Issuance (Dati) Reference Point .. 25
6.2.3.4 DAA1 Access Token Usage (Datu) Reference Point ... 26
6.2.3.5 DAA1 Authorization Grant Data (Dagd) Reference Point ... 26
6.2.3.6 DAA1 Access Token Data (Datd) Reference Point .. 26
6.3 Dynamic Authorization Architecture Proposal 2 (DAA2) Reference Model .. 27
6.3.1 Access Token Issuance Architecture .. 27
6.3.2 General Procedure of Token Issuance and Use in DAA2 .. 28
6.4 Dynamic Authorization Architecture Proposal 3 (DAA3) Reference Model .. 29
6.4.1 Overall Description .. 29
6.4.2 DAA3 Functional Roles ... 33
6.4.2.1 Token Subject ... 33
6.4.2.2 Token Authority ... 34
6.4.2.2.1 Introduction ... 34
6.4.2.2.2 Requesting Token Authority ... 34
6.4.2.2.3 Issuing Token Authority ... 34
6.4.2.3 Token Consumer .. 35
6.4.3 DAA3 Reference Points ... 36
6.4.3.1 DAA3 Token Subject-to-Authority (Dsa) Reference Point .. 36
6.4.3.2 DAA3 Authority-to-Authority (Daa) Reference Point ... 36
6.4.3.3 DAA3 Token Subject-to-Consumer (Dsc) Reference Point ... 37
6.4.3.4 DAA3 Consumer-to-Authority (Dca) Reference Point .. 37
6.4.4 Example Procedure of Access Token Issuance and Use in DAA3... 38
6.5 Dynamic Authorization Architecture Proposal 4 (DAA4) Reference Model .. 40
6.5.1 Overall Description .. 40
6.5.2 DAA4 Functional Roles ... 41
6.5.2.1 Subject .. 41
6.5.2.2 Hosting Entity ... 41
6.5.2.3 Authorization Entity ... 42
6.5.3 DAA4 Reference Points ... 42
6.5.4 Example Procedure of Dynamic Authorization using oneM2M reference points and primitives 42
6.6 Dynamic Authorization Architecture Proposal 5 (DAA5) Reference Model .. 43
6.6.1 Token Based Access Control Architecture ... 43
6.6.2 Generic Procedure of Token Based Access Control .. 44

7 Description and Analysis of Available Options ... 45
7.1 Proposal 1: A Solution of Access Token Issuance and Use ... 45
7.1.1 Resource Definitions for Token Issuance ... 45
7.1.1.1 Resource Type accessTokenAuthority .. 45
7.1.1.2 Resource Type accessTokenIssuing ... 46
7.1.1.3 Resource Type accessToken ... 46
7.1.2 Resource Procedures for Token Issuance ... 47
7.1.2.1 <accessTokenAuthority> Resource Procedures .. 47
7.1.2.1.1 Introduction ... 47
7.1.2.1.2 Create <accessTokenAuthority> ... 47
7.1.2.2 <accessTokenIssuing> Resource Procedures.. 49
7.1.2.2.1 Introduction ... 49
7.1.2.2.2 Create <accessTokenIssuing> ... 49
7.1.2.3 <accessToken> Resource Procedures ... 50
7.1.2.3.1 Introduction ... 50
7.1.2.3.2 Retrieve <accessToken> ... 51
7.2 Proposal 4: oneM2M-based SLDA .. 51
7.2.1 Introduction .. 51
7.2.2 Architecture .. 51
7.2.3 General Procedure for Dynamic Authorization Policy Provisioning and Configuration, Policy

Evaluation and Enforcement .. 52
7.2.3.1 Configuration of Dynamic Authorization Policies ... 52
7.2.2.2 Service Layer Dynamic Authorization ... 53
7.2.2.2.1 Introduction ... 53
7.2.2.2.2 Dynamic Authorization Process - Based on Subscription ... 56

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI TTA, TTC) Page 5 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

7.2.3 Resource Definitions .. 57
7.2.3.1 Resource Type <dynAuthPolicy> ... 57
7.2.3.2 <consult> Resource ... 59
7.2.3.3 Enhancements to <accessControlPolicy> ... 61
7.3 Proposal 5: A Solution of Token Based Access Control ... 61
7.3.1 Token Structure .. 61
7.3.2 Resource Type token .. 62
7.3.3 Procedure of Token Based Access Control .. 64

8 Release 2 Dynamic Authorization .. 66
8.1 Overview of Release 2 Dynamic Authorization Features .. 66
8.2 Overview of Direct Dynamic Authorization .. 68
8.3 Overview of Indirect Dynamic Authorization ... 69
8.4 Overview of Tokens... 70

9 Conclusion .. 71

History .. 72

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI TTA, TTC) Page 6 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

1 Scope

Development of the Internet of Things implies convenient ways to enable interactions between M2M Applications

depending on different actors, and possibly affiliated to different M2M Service Providers. In the context of an M2M

Service Platform, this relies on a practical means for a Resource consuming application to obtain possibly temporary

and restricted access to a Resource exposed by a Resource producing application. The Access Control Policies

mechanism of oneM2M TS-0003 [i.3] was suitable under the assumption of centralized (client-server style) M2M

deployments where interactions between Resource producers and Resource consumers are mainly predictable at the

time of resource creation and restricted within a known (reduced) set of interacting entities that is not constantly

evolving. This assumption is no longer valid in IoT scenarios where many-to-many application level interactions

between multitudes of devices would result in exponential explosion in the number of Access Control Policies to

establish and manage, while their unpredictable and fast evolving nature would create a bottleneck where the ACPs are

maintained and evaluated.

This work item will therefore investigate the suitability of alternative authorization schemes. This can include

e.g. token-based models, where the grant of authorization is directly embodied by a virtual ticket delivered to the

requester that carries a scope of authorization as well as validation means.

2 References

2.1 Normative references

References are either specific (identified by date of publication and/or edition number or version number) or

non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the

referenced document (including any amendments) applies.

The following referenced documents are necessary for the application of the present document.

Not applicable.

2.2 Informative references

References are either specific (identified by date of publication and/or edition number or version number) or

non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the

reference document (including any amendments) applies.

The following referenced documents are not necessary for the application of the present document but they assist the

user with regard to a particular subject area.

[i.1] oneM2M Drafting Rules.

NOTE: Available at http://www.onem2m.org/images/files/oneM2M-Drafting-Rules.pdf.

[i.2] oneM2M TS-0001: "Functional Architecture".

[i.3] oneM2M TS-0003: "Security Solutions".

[i.4] oneM2M TS-0011: "Common Terminology".

[i.5] oneM2M TR-0016: "Study of Authorization Architecture for Supporting Heterogeneous Access

Control Policies".

[i.6] IETF RFC 6749 (2012): "The OAuth 2.0 Authorization Framework".

[i.7] IETF draft-hardjono-oauth-umacore-13: "User Managed Access Profile of OAuth 2.0".

NOTE: Available at http://tools.ietf.org/html/draft-hardjono-oauth-umacore-13.

http://www.onem2m.org/images/files/oneM2M-Drafting-Rules.pdf
http://tools.ietf.org/html/draft-hardjono-oauth-umacore-13

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI TTA, TTC) Page 7 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

[i.8] OpenId foundation. OpenID Connect Dynamic Client Registration 1.0. [Online].

NOTE: Available at http://openid.net/specs/openid-connect-registration-1_0.html.

[i.9] oneM2M TS-0004 "Service Layer Core Protocol Specification".

[i.10] IETF RFC 7519 (2015): "JSON Web Token (JWT)".

[i.11] IANA JSON Web Token (JWT) registry.

NOTE: Available at http://www.iana.org/assignments/jwt/jwt.xhtml.

3 Definitions, symbols and abbreviations

3.1 Definitions

For the purposes of the present document, the terms and definitions given in oneM2M TS-0011 [i.4], oneM2M

TS-0003 [i.3] and the following apply:

access token [i.6]: dynamically issued credential which can be used to access resources

NOTE: An access token represents an authorization issued to the Originator.

access token issuing privileges: those privileges that the Token Authority is allowed to delegate to other entities by

issuing Access Tokens

authorization grant [i.6]: dynamically issued credential representing the Grant Approver's authorization to access

resources

NOTE: An authorization grant can either be used directly access token, or used by the Originator to obtain an

access token.

authorization server: entity with permission to access tokens to the originator upon presentation of an authorization

grant. Performs a functional role similar to an OAuth 2.0 authorization server [i.6]

dynamic authorization: enables a service provider or resource owner with the ability to provide access privileges,

based on one or more authorization checks to an entity such that it is able to perform operations on resource(s) for a

finite duration, when a prior relationship or static access control policy does not exist for the operation requested by that

entity

(oneM2M) dynamic authorization architecture: framework providing dynamic authorization for obtaining access to

resources

grant approver: entity with permission to grant access to a protected resource

NOTE: Provides part of the functionality of an OAuth 2.0 resource owner [i.6].

grant issuer: entity recognized (by the Host CSE and/or an authorization server) as having permission to issue

authorization grants

NOTE: Provides part of the functionality of an OAuth 2.0 resource owner [i.6].

http://openid.net/specs/openid-connect-registration-1_0.html
http://www.iana.org/assignments/jwt/jwt.xhtml

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI TTA, TTC) Page 8 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

3.2 Symbols

For the purposes of the present document, the symbols given in oneM2M TS-0011 [i.4] and oneM2M TS-0003 [i.3]

apply.

3.3 Abbreviations

For the purposes of the present document, the abbreviations given in oneM2M TS-0011 [i.4], oneM2M TS-0003 [i.3]

and the following apply:

AS Authorization Server

DAA (oneM2M) Dynamic Authorization Architecture

Daga DAA authorization grant approval reference point

Dagd DAA authorizationg grant data reference point

Dagi DAA authorization grant issuance reference point

Datd DAA access token data reference point

Dati DAA access token issuance reference point

Datu DAA access token usage reference point

OAuth Web Authorization Protocol

NOTE: Denotes an IETF Working Group and specifications produced by that working group.

RO Resource Owner

RPT Requesting Party Token

RS Resource Server

SLDA Service Layer Dynamic Authorization

SLDA-PA Service Layer Dynamic Authorization Policy Administration

SLDA-PD Service Layer Dynamic Authorization Policy Determination

SLDA-PE Service Layer Dynamic Authorization Policy Enforcement

SLDA-PI Service Layer Dynamic Authorization Policy Information

UMA User Managed Access

4 Conventions

The key words "Shall", "Shall not", "May", "Need not", "Should", "Should not" in the present document are to be

interpreted as described in the oneM2M Drafting Rules [i.1].

5 Use Cases

5.1 Use Case for Access Token in Dynamic Authorization

5.1.1 Description

In a oneM2M System the Platform, Gateways and Devices interact with each other in the way of many-to-many,

furthermore many of these relations can be dynamic and temporary. It is desirable that the access control mechanism

used by the M2M System is flexible and efficient.

The use case in the following clauses shows the use of dynamically issued access tokens that carry authorization

information to simplify the access control management. In this use case the mobile phone of a tourist is issued with

access tokens in which there are access privileges to the resources of M2M Gateways/Devices. The tourist then can use

these access tokens to access various M2M Gateways or Devices in the hotel or attractions, such as accessing his/her

room, operating electric devices in the room, accessing the VIP area, using the facilities in the fitness center, renting a

bicycle, or using some tourist facilities in the attractions. If using the traditional way, i.e. the privileges are placed in the

local stored access control policies, then all the access control policies in the gateways or devices related to this tourist

are expected to be updated. As there are so many tourists coming and going, the workload of modifying and uploading

access control policies will be very large, if not impossible.

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI TTA, TTC) Page 9 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

5.1.2 Actors

The entities involved in this use case are shown in figure 5.1.2-1 and described as follows:

M2M Platform: It represents an infrastructure entity that interacts with M2M Gateways/Devices and M2M Application

to provide common functionalities. In this use case the M2M Platform provides communication path between two M2M

Gateways/Devices that do not have registration relation.

Token Issuer: It represents an M2M Gateway that is responsible for issuing access tokens to other M2M

Gateways/Devices.

Mobile Phone: It represents an M2M Device held by a tourist. Access tokens are issued to the mobile phone, and the

tourist uses the mobile phone to interact with other M2M Gateways/Devices.

M2M Gateway: It is responsible for caching and forwarding the messages exchanged between the M2M Platform and

target M2M Devices. It also acts as a control center that stores various information related to the M2M Devices that

have registered to it.

M2M Device: It represents various M2M devices such as door lock of door, fitness equipment, bicycle lock, smart TV,

facilities for tourists at attractions and so on.

M2M Platform

M2M Gateway 1

(Token Issuer)

 Access Resource

Get Token

M2M Gateway 2 M2M Gateway n

M2M Device

(Mobile Phone)

Token

Token

M2M DevicesM2M Devices

Figure 5.1.2-1: Using token to carry authorization information

5.1.3 Pre-conditions

The issuer (M2M Gateway 1) of access tokens is provisioned with security credentials that are used to provide integrity

and confidentiality protection for access tokens.

Other M2M Gateways are provisioned with security credentials that are used for verifying received access tokens.

5.1.4 Normal Flow

The procedure of issuing and using access tokens is:

1) A tourist registers his/her mobile phone as an M2M Device with the M2M Gateway 1 at the hotel reception.

The M2M Gateway 1 also plays the role of token issuer.

2) The token issuer issues one or multiple access tokens to the mobile phone according to the services booked by

the tourist. Inside the tokens there is some authorization information describing what privileges are assigned to

the mobile phone (M2M Device).

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI TTA, TTC) Page 10 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

NOTE: The tourist can then use these access tokens to access various M2M Gateways or Devices in the hotel

through his/her mobile phone, such as accessing his/her room, operating electric devices in the room,

accessing the VIP area, using the facilities in fitness center, renting a bicycle, or using some tourist

facilities in the attractions.

3) When the tourist arrives at some sites such as room door, the mobile phone detects an M2M Gateway or an

M2M Device with which it can make contact. The mobile phone then establishes security association with the

detected device via the M2M Gateway 1 and M2M Platform. After that a resource access request with

appropriate access tokens are sent to the M2M Gateway/Device.

4) The M2M Gateway/Device verifies the access tokens sent by the mobile phone, extracts the privileges from

the token, and evaluates the access request with the privileges. If it is permitted, the M2M Gateway/Device

executes the requested operation on the target resource.

5.1.5 Potential requirements

1) The authorized M2M entity shall be able to issue access tokens that describe what privileges are assigned to

the holder of the access tokens used to access the resources in other M2M entities.

2) The M2M System shall provide authenticity, integrity and confidentiality protection for access tokens.

3) The M2M System shall be able to revoke the access tokens that are not yet expired.

5.2 Use Case for Role Token in Dynamic Authorization

5.2.1 Description

According to the description in oneM2M TS-0001[i.2], in the oneM2M System the M2M Service Subscription defines

the technical part of the contract between an M2M Subscriber and an M2M Service Provider. An M2M Service

Subscription establishes a link between one or more AEs; one or more M2M Nodes, one or more M2M Services. In

each M2M Service, one or multiple M2M Service role(s) are defined by the M2M Service Provider. An M2M Service

role is mapped to a created permission pertaining to resource types which are associated with M2M Service. The M2M

Subscriber subscribes to one or multiple Service role(s) within the M2M Services.

In Role Based Access Control (RBAC) roles are assigned to users, and privileges are assigned to roles, users obtain

privileges through their assigned roles. There are two ways to implement the role-user assignments, one is both role-

user assignments and privilege-role assignments are described in the RBAC policies; another is only privilege-role

assignments are described in the RBAC policies, the user-role binding is achieved in the time of access control. One

way or another depends on the specific application scenario. If the role-user assignment is stable, user-role assignments

can be described in RBAC policies, otherwise another way can be considered.

In the oneM2M application environment the relations between AEs, CSEs, M2M Nodes and M2M Services can

dynamically change. This dynamical changing can bring some access control issues. For example, in the use case

shown in the Figure 5.2.1-1, the house owners can subscribe to various M2M Services and can also change their service

subscriptions from time to time. When the house owners change their Service Subscriptions, it can result in a large

number of access control policy revision if the user-role assignments is implemented in RBAC policies. Also note that

in many IoT scenarios the definition of static Roles is not as straightforward as in corporate use cases where this

concept was most successful. So in the oneM2M System security mechanisms or approaches are considered to address

such issues.

The ABAC model, which considers contextual properties in addition to Originators and target resources, enables some

improvements to manage the increasing complexity. However several IoT use cases rely on dynamicity in the

assignment of Roles and the management of Access Control Policies would remain a burden in dynamic scenarios.

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI TTA, TTC) Page 11 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

M2M Application

Service Providers

M2M Platform

M2M Service

Provider

Electricity

Company
Home Gateway 1

M2M Devices

Home Energy

Management

System

Security Service

Company

Home Gateway 2

Home Gateway n

M2M Gateways

Smart Meter

Air Conditioner

Security Facility

Figure 5.2.1-1: Home Facility Management System High Level Illustration

The use case in the following clauses shows using dynamically issued security tokens to carry Service Roles in order to

avoid modifying RBAC policies at the CSEs in the Field Domain.

5.2.2 Actors

The entities involved in this use case are shown in the Figure 5.2.2-1 and described as follows:

M2M Platform: It represents an infrastructure entity that interacts with M2M Gateways/Devices and M2M Application

to provide common functionalities for the M2M Services such as collecting the status and configuration information of

home devices and controlling them via the home gateway.

M2M Application: It provides some M2M Services for the users through the M2M Service Platform.

EXAMPLE: A Home Energy Management System (HEMS) provides management services for home electronic

equipment to minimize energy consumption, and a Security Service Company provides home

security related services such as room/house monitoring, fire monitoring and intrusion monitoring.

M2M Gateway: It is responsible for caching and forwarding the messages exchanged between the M2M Platform and

target M2M Device. It also acts as a house control center that stores various information pertaining to M2M Devices in

the house, such as smart meter data that is waiting for upload, air conditioner control policy, security monitoring

records, and so on.

M2M Devices: They represent various M2M devices such as smart meter, air conditioners, fire alarms, room/house

monitors and so on.

M2M PlatformM2M Gateway 2 M2M Application

M2M Gateway 1

M2M Gateway 3

M2M Devices

M2M Devices

M2M Devices

Token

 Access Resource

Token

Get Token

Figure 5.2.2-1: Using token to carry Service Roles in RBAC

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI TTA, TTC) Page 12 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

5.2.3 Pre-conditions

The M2M Platform is provisioned with security credentials that are used to provide integrity and confidentiality

protection for access tokens.

M2M Gateways are provisioned with security credentials that are used to verify received access tokens.

5.2.4 Normal Flow

The procedure of issuing and using access tokens is:

1) A M2M Application that has registered with the M2M Platform sends a Service Role Token Request to the

M2M Platform.

2) The M2M Platform first authenticates the M2M Application, and then checks the Service Role Token issuing

policies. If the issuance is permitted, the M2M Platform issues a Service Role Token to the M2M Application.

This token is protected using the provisioned security credentials.

3) The M2M Platform sends the generated Service Role Token to the M2M Application, or the Service Role

Token is retrieved by the M2M Application later.

4) The M2M Application sends a resource access request to the M2M Gateway. In the request the Service Role

Token is included.

5) The M2M Gateway authenticates the M2M Application, verifies the Service Role Token using the provisioned

security credentials, extracts the Service Roles from the Service Role Token, and evaluates resource access

request with applicable RBAC policies. If this access is permitted, the M2M Gateway executes the requested

operation on the target resource.

5.2.5 Potential requirements

1) The oneM2M System shall support Role Based Access Control.

2) The M2M System shall be able to issue access tokens for carrying role information in order to facilitate Role

Based Access Control.

3) The M2M System shall provide authenticity, integrity and confidentiality protection for access tokens.

4) The M2M System shall be able to revoke the access tokens that are not yet expired.

5.3 Use case of Dynamic Authorization Policy Provisioning

5.3.1 Description

In a oneM2M System the Platform, Gateways and Devices interact with each other in the way of many-to-many,

furthermore many of these relations can be dynamic and temporary. The access control mechanism used by the M2M

System are expected to be flexible and efficient and authorization policies that support such dynamic authorization are

expected to be tailored accordingly and provisioned to the various authorization components.

In this use case, provisioning of dynamic authorization policies to the various dynamic authorization components is

described. An administrator that is authorized uses the Dynamic Authorization Policy Retrieval Point (DA-PRP) to

define, create and modify appropriate dynamic authorization policies associated with each of the dynamic authorization

components. The DA-PRP then provisions the appropriate policies to the DA-PDP, DA-PEP and information to the

DA-PIP on a regular basis.

The present use case assumes that the PRP would be provided by the M2M Platform while the PDP, PEP and PIP

would be co-located in the M2M Gateway. Though this can make sense in some use cases, such choice would consider

the involved complexity to manage security policies. In the many IoT scenarios that involve multiple resource servers

of which M2M Gateways are just a particular instance, the management of the authorization policies in each of those

distributed entities is likely to become very complex, especially when multiple stakeholders are involved. In such use

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI TTA, TTC) Page 13 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

cases, centralizing the whole policy management in the M2M Platform to implement only the PEP in the resource

servers (which can be constrained devices) would be more judicious.

5.3.2 Actors

The entities involved in the use case are shown in Figure 5.3.2-1 and described as follows:

M2M Platform: It represents an infrastructure entity that interacts with M2M Gateways /Devices and the M2M

Application to provide common functionalities. In this use case the M2M Platform provides the ability to provision

dynamic authorization policies by implementing a Dynamic Authorization - Policy Retrieval Point (DA-PRP).

M2M Gateway: It represents a gateway that is responsible for hosting a resource. In addition, the M2M Gateway is

responsible for implementing the Dynamic Authorization - Policy Enforcement (DA-PEP), Dynamic Authorization -

Policy Decision Point (DA-PDP) and Dynamic Authorization - Policy Information Point (DA-PIP) functions.

M2M Device: It represents a sensor application or a sensor device that is responsible for measuring sensor data and

hosting a resource on an M2M Gateway.

M2M
Device

M2M
Gateway

DA-PEP
DA-PDP
DA-PIP

M2M
Platform

DA-PRP

Figure 5.3.2-1: Entities involved in provisioning of Dynamic Authorization policies

5.3.3 Pre-Conditions

The M2M Platform that implements the DA-PRP, has access to a policy database that is configured with dynamic

authorization rules.

It is assumed that the communications between the M2M Platform and the M2M Gateway occurs over a secure

communications channel.

It is assumed that the communications between the M2M Device and the M2M Gateway occurs over a secure

communications channel.

5.3.4 Normal Flow

Procedure for provisioning of dynamic authorization policies:

1) An administrator that has authorized access to the M2M Platform configures appropriate policies that are to be

provisioned using a DA-PRP.

2) The DA-PRP at the platform, provisions appropriate decision policies to the DA-PDP, enforcement policies to

the DA-PEP and information to the DA-PIP. The provisioning process is performed periodically.

5.3.5 Potential Requirements

The M2M system shall support provisioning of dynamic authorization policies.

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI TTA, TTC) Page 14 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

5.4 Use case of Dynamic Authorization

5.4.1 Description

In a oneM2M System the Platform, Gateways and Devices interact with each other in the way of many-to-many,

furthermore many of these relations can be dynamic and temporary. It is desirable that the access control mechanism

used by the M2M System is flexible and efficient.

In this use case an M2M Device would like to perform CRUD operations on resource(s) hosted on an M2M Gateway.

The M2M device can be registered with the M2M Gateway or can even be completely unknown to it. Even if the M2M

Device is registered to the Gateway, it is deemed that the Device is restricted from being able to perform one or more of

the CRUD operations on the resource based on a traditional static access control policy. Dynamic authorization enables

a previously restricted M2M Device to be able to perform newer operations on resource(s) hosted at the M2M Gateway.

Dynamic authorization checks can be dictated based on dynamic authorization policies which can dictate the types of

checks (e.g. higher-level of authentication checks, payment based authorization, platform validation checks etc.) that are

performed. The authorization provided can be for a finite period of time and can be added to the static access control

policy.

The present use case assumes that the PRP would be provided by the M2M Platform while the PDP, PEP and PIP

would be co-located in the M2M Gateway. Though this can make sense in some use cases, such choice would consider

the involved complexity to manage security policies. In the many IoT scenarios that involve multiple resource servers

of which M2M Gateways are just a particular instance, the management of the authorization policies in each of those

distributed entities is likely to become very complex, especially when multiple stakeholders art involved. In such use

cases, centralizing the whole policy management in the M2M Platform to implement only the PEP in the resource

servers (which can be constrained devices) can be more judicious.

5.4.2 Actors

The entities involved in the use case are shown in Figure 5.4.2-1 and described as follows:

M2M Gateway: It represents a gateway that is responsible for hosting a resource. In addition, the M2M Gateway is

responsible for implementing the Dynamic Authorization - Policy Administration Point (DA-PRP), Dynamic

Authorization Policy Enforcement (DA-PEP), Dynamic Authorization Policy Decision (DA-PDP) functions and storing

Policy Information Point (DA-PIP).

M2M Device: It represents a sensor application or a sensor device that is responsible for measuring sensor data and

hosting a resource on an M2M Gateway.

M2M
Device

M2M
Gateway

DA-PRP
DA-PEP
DA-PDP
DA-PIP

Figure 5.4.2-1: Entities involved in Dynamic Authorization

5.4.3 Pre-Conditions

The M2M Gateway is provisioned with appropriate dynamic authorization policies based on which, it decides on the

dynamic authorization checks that will be performed.

It is assumed that the communications between the M2M Device and the M2M Gateway occurs over a secure

communications channel.

5.4.4 Normal Flow

Procedure for dynamic authorization:

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI TTA, TTC) Page 15 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

1) An M2M Device requests to perform a CRUD operation on a resource hosted on the M2M Gateway.

2) The M2M Gateway determines that the M2M Device does not have the appropriate authorization based on a

check with the static ACPs.

3) The DA-PDP at the M2M Gateway then consults its dynamic authorization polices in order to determine if the

M2M Device can be provided with authorization. If dynamic authorization can be carried out, then the M2M

Gateway determines the types of authorization checks that will be performed with the M2M Device.

4) The M2M Gateway in conjunction with the M2M Device performs one or more dynamic authorization checks

(e.g. multi-factor authentication checks, platform validation checks, payment-based authorization,

subscription, etc.)

5) If the authorization checks have been successfully completed then the DA-PDP updates the relevant entries

within the DA-PEP so that the M2M Device is able to perform one or more CRUD operations on a resource

for a finite amount of time. Additionally, in certain cases, the DA-PDP can update the ACP to include the

M2M Device and the resource/operations that it is allowed to perform based on the dynamic authorization

results.

6) The M2M Gateway provides a response to the M2M device indicating the authorization that was provided to

it.

5.4.5 Potential Requirements

1) The M2M system shall support that all the dynamic authorization functions reside at the same M2M Gateway.

2) The M2M system shall support various authorization checks (e.g. multi-factor authentication, platform

validation, payment authorization etc.) in order to enable dynamic authorization.

3) The M2M system shall enable an authorized entity (e.g. DA-PDP) to update the ACP based on results of the

dynamic authorization checks.

5.5 Use case of Dynamic Authorization

5.5.1 Description

In a oneM2M System the Platform, Gateways and Devices with interact each other in the way of many-to-many,

furthermore many of these relations can be dynamic and temporary. The M2M System relies on the access control

mechanisms being flexible and efficient.

In this use case an M2M Device would like to perform CRUD operations on resource(s) hosted on an M2M Gateway.

The M2M device can be registered with the M2M Gateway or can even be completely unknown to it. Even if the M2M

Device is registered to the Gateway, it is deemed that the Device is restricted from being able to perform one or more of

the CRUD operations on the resource based on a pre-configured access control policy. Dynamic authorization enables

an M2M Device to be able to perform operations on resource(s) hosted at the M2M Gateway even when pre-configured

access policies do not allow it. Dynamic authorization checks can be dictated based on dynamic authorization policies

which can dictate the types of checks (e.g. higher-level of authentication checks, payment based authorization, platform

validation checks etc.) that are performed. The authorization provided can be for a finite period of time and can be

added to the static access control policy.

5.5.2 Actors

The entities involved in the use case are shown in Figure 5.5.2-1 and described as follows:

M2M Gateway: It represents a gateway that is responsible for hosting a resource. In addition, the M2M Gateway is

responsible for implementing the Dynamic Authorization - Policy Enforcement (DA-PEP).

Trusted Third-Party: It represents an entity that is trusted both by an M2M Device as well by an M2M Gateway that

is responsible for implementing the Dynamic Authorization - Policy Decision Point (DA-PDP) functionality as well as

Dynamic Authorization - Policy Information Point (PIP). In addition it can implement or enable various types of

authorization checks (e.g. multi-factor authentication, payment/subscription, platform integrity checks).

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI TTA, TTC) Page 16 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

M2M Device: It represents a sensor application or a sensor device that is responsible for measuring sensor data and

hosting a resource on an M2M Gateway.

M2M
Device

M2M
Gateway

DA-PEP

 Trusted
Third-Party

(TTP)

DA-PDP

DA-PIP

Figure 5.5.2-1: Entities involved in Dynamic Authorization

5.5.3 Pre-Conditions

The M2M Gateway and the Trusted Third-party are provisioned with appropriate dynamic authorization policies based

on which, it decides on the dynamic authorization checks that will be performed.

It is assumed that all the communications that occur between the M2M Device, the M2M Gateways and the TTP occur

over secure communications channel.

5.5.4 Normal Flow

Procedure for dynamic authorization:

1) An M2M Device requests to perform a CRUD operation on a resource hosted on the M2M Gateway.

2) The M2M Gateway determines that the M2M Device does not have the appropriate authorization based on a

check on the pre-configured ACPs.

3) The M2M Gateway performs a request to the DA-PDP on the TTP in order to determine if the M2M Device

can be granted access privileges via dynamic authorization.

4) The DA-PDP on the TTP determines that dynamic authorization can be carried out, then it determines the

types of authorization checks that will be performed either with the M2M Device or on behalf of the device.

5) The DA-PDP on the TTP in conjunction with either the M2M Device or M2M Gateway performs one or more

dynamic authorization checks (e.g. multi-factor authentication checks, platform validation checks, payment-

based authorization, subscription, etc.) or enables the M2M Device to communicate with other authorization

enabling functions in order to achieve the authorization.

6) If the authorization checks are successfully completed, then the DA-PDP on the TTP sends a response

message containing authorization information (e.g. authorization level, validity of the authorization,

operation/resources that can be performed by the M2M Device, etc.) to the DA-PEP on the M2M Gateway.

The authorization information can be represented in varied forms (e.g. signed token(s), un-signed token(s),

XML message, oneM2M messaging/resource structures, etc.). Additionally, in certain cases, the DA-PDP can

optionally update the ACP to include the information about the M2M Device and the resource/operations that

it is allowed to perform based on the dynamic authorization results.

7) The DA-PEP on the Gateway updates the relevant entries so that the M2M Device is able to perform the

requested CRUD operations on resource(s).

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI TTA, TTC) Page 17 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

8) The M2M Gateway provides a response to the M2M device indicating the authorization that was provided to

it.

5.5.5 Potential Requirements

1) The M2M system shall support distributed dynamic authorization functions.

2) The M2M system shall support and enable various authorization checks (e.g. multi-factor authentication,

platform validation, payment authorization etc.) in order to enable dynamic authorization.

3) The M2M system shall support various means to provide authorization information (e.g by means of signed

token(s), un-signed token, XML messaging, JSON data, oneM2M messaging/resource structures).

4) The M2M system shall support an authorized entity (e.g. DA-PDP) to update the relevant ACPs based on

dynamic authorization results

6 High Level Architecture

6.1 Review of existing frameworks

6.1.1 Introduction

Materials in this section are inspired from deliverables developed under European Projects SITAC and SUNSEED.

6.1.2 OAuth 2.0

OAuth 2.0 [i.6] is an authorization framework that aims to provide a secure way to allow third-party applications to get

access to data on behalf of resource owners through a set of defined request flows. The main purpose of OAuth is to

enable the user (resource owner, RO) to grant services and applications (client) access to protected resources stored at a

resource server (RS), without sharing user credentials with the application. Instead of using the resource owner's

credentials to access protected resources, the client gets an access token. Access tokens are issued to third-party clients

by an authorization server (AS) after the approval of the issuance by the resource owner.

This protocol is widely used in the web today, primarily to allow users to register/log in into web platforms using their

pre-existing credentials from well-known identity providers, but cannot be directly applied in M2M/IoT scenario. To

make it suitable to oneM2M systems, the main issues to be addressed are:

 OAuth-defined flows assume that the user operates the third party service that the user is authorizing. In

oneM2M scenarios, in contrast, the user operating the service that requests access to a resource might not be

its owner.

 OAuth resource servers and scopes are defined at design time. However, in a distributed IoT architecture

where services are deployed by end users at any time, a dynamic registration of resource servers relies on the

ability to introduce new objects in the oneM2M model.

 The control of user privacy resides on the AS, which is a centralized point in the OAuth architecture. Although

OAuth does not prevent deployment of multiple authorization servers, it is a topic not covered in the protocol

specification, which raises many issues when using the standard "out-of-the-box" (e.g. authorization servers

discovery, how to bind a resource server with a specific AS).

As discussed earlier, the resource owner is the source in all OAuth flows. The whole protocol is designed around that

assumption. On the contrary, in IoT scenarios, users can be requesting access to resources that they do not own. As a

consequence of that, OAuth alone cannot be used to support all oneM2M use cases.

Regarding the third issue described, it can be argued that OAuth also provides ways to deploy distributed authorization

schemes. However, it is very focused on resource-owner driven scenario and most of the existing implementations are

mainly focused on the register/log in use case. In spite of that, OAuth, because of is extensibility, can be used to

accommodate additional scenarios.

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI TTA, TTC) Page 18 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

6.1.3 User Managed Access (UMA)

User-Managed Access [i.7] is a profile of the OAuth 2.0 protocol that supports delegation of authorization in user

oriented (rather than machine oriented) scenarios. It is intended to encompass the scenario where a resource owner

wants to manage the access control to protected resources by clients operated by requesting parties, other than the

resource owner. While the OAuth specification is focused on Alice-to-client sharing model, UMA focuses on

Alice-to-Bob sharing model, where Alice can share proactively her resources before Bob even knows they exist. In

addition, Bob can request a permission. In that case, a notification will be sent to Alice for her to decide whether she

wants to grant access to Bob. Alice will collect these considerations from the AS.

Figure 6.1.3-1: UMA actors and architecture

To achieve this, UMA defines new roles and interactions on top of OAuth as illustrated in Figure 6.1.3-1. Moreover, the

roles defined in OAuth specification are slightly changed to accomplish UMA's objectives. From the UMA viewpoint,

RS are clients for the AS, effectively decoupling RS and AS roles. In UMA, an RS can choose the AS where he wants

to delegate the authorization. It is important to stress the point that no previous relationship between them is assumed.

The other main difference is the introduction of the requesting party role. A requesting party is an entity that seeks

access to a protected resource and can be different to the RO. The whole point of the introduction of this new role is to

be able to distinguish between resource owner and resource consumer. Therefore, the RO can share his resources

preserving the control over them, while any requesting party other than the resource owner can either request access to

the resource or access it directly, provided that it has been granted access beforehand.

UMA defines the set of interactions that performed before a requesting party can access a resource. This interactions

can be grouped in three phases: protecting a resource, getting access permission for a resource and accessing a resource.

UMA is focused on access control management and does not specify data access protocols.

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI TTA, TTC) Page 19 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

The capability to control access to resources at the action level is referred in this document as "fine grain authorization

capability". Both figure 6.1.3-1 and figure 6.1.3.2 shows a resource server holding resources owned by a resource

owner. Those resources can be accessed by a requesting party using a client application software, e.g. an oneM2M AE

operating on its behalf. The administration of the access control to the resources can be cumbersome or difficult in the

case where the resource owner owns multiple resources spread among multiple resource servers, because this

administration task is performed in multiple places. This is where UMA can help, by enabling each resource server to

delegate the administration to some or all of the resources it controls on behalf of the resource owner to a separate

authorization server. This is done in a first phase by having the resource server register with the authorization server all

resources the administration of which it wishes to delegate. In a second step, the client software acting on behalf of the

requesting party will negotiate access to the resource with the authorization server. A successful negotiation will result

in the client being provided with a Requesting Party Token (RPT), which when presented to the resource server will

enable access to the protected resource.

Figure 6.1.3-2: UMA APIs and flow of operations

Figure 6.1.3-2 shows the different APIs and flows of operation involved in UMA.

In a preliminary phase not shown on this figure the resource server and the authorization server have bootstrapped their

relationship and as a result of this the resource server has obtained the possibility to invoke a resource publication REST

API exposed by the authorization server for publishing the description of the resources it wishes to place under the

protection of the authorization server. (step1).

In step 2, the client attempts to access the resource in the resource server without presenting a requesting party token. It

is then pointed to the authorization server and given an "authorization ticket" indicating what is to be authorized. The

list of actions to be authorized is described as an array of "scopes". Upon authentication and check of the authorization

policies, the authorization server delivers a Requesting Party Token (RPT) to the client (step 3). Finally, the client is

granted access to the resource upon presentation of this token to the resource server (step 4).

UMA offers many advantages for M2M/IoT scenarios, where users and organizations want to share their resources

while keeping control both over the entities (friends, organizations, services, etc.) that have access to them and over the

granularity of the information shared. This scenario can be modeled using UMA features, like resource registration and

scope definition. Finally, due to the fact that the RS and the AS are decoupled in UMA, users can choose which entity

they want to delegate the access control of his resources, instead of binding them to a particular provider.

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI TTA, TTC) Page 20 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

In a dynamic and distributed environment, the access control architecture is expected to be flexible enough not only to

accept new entities at any time, but also to modify their roles. In the oneM2M ecosystem, users will register new

resources when they want to share information, and therefore the architecture designed is expected to allow new

resource servers at runtime. While OAuth does not allow the introduction of new resource servers, UMA is able to

handle this case.

6.1.4 OpenID Connect

OpenID Connect [i.8] represents another extension of OAuth 2.0 protocol, it is focused on the use case of sharing the

end-user identity with clients. This use case is usually implemented through OAuth by giving applications an access

token that allows them to get information of the user. It is often seen as an "Authorization over my identity" while, in

essence, it represents an authentication process. OpenID Connect tries to address this use case and simplifies the

protocol flow while preserving extensibility and compatibility with different identity providers.

As oneM2M supports managing different sources of user identities, OpenID Connect is a good candidate to accomplish

this task. UMA can also be integrated with OpenID Connect. While UMA does not enforce the use of unique identifiers

in the Authorization Server, unique identifiers are used for access control policies. In this case, the end-user will

authorize the AS to query an identity endpoint for their unique (or non-unique) identity data.

6.2 Dynamic Authorization Architecture Proposal (DAA1)
Reference Model

6.2.1 Overall Description

Figure 6.2.1-1 shows the oneM2M Dynamic Authorization Architecture Proposal 1 (DAA1) reference model. The

DAA1 reference model is similar to that used for OAuth 2.0 [i.6].

Originator

Grant IssuerGrant Issuer

Authorization
Server

Host CSE

Grant ApproverDagi Daga

Dati

Datu

Dagd

Datd

Figure 6.2.1-1: oneM2M Dynamic Authorization Architecture Proposal 1 (DAA1) Reference Model.

The DAA1 reference model and OAuth 2.0 both utilize the two types of dynamically-issued tokens:

 An access token represents an authorization for the Originator to access resources. The Originator presents the

Host CSE with a request to access resources and access token(s). The Host CSE verifies the access token and

then processes the request based on the authorization represented by the access token.

 An authorization grant describes an authorization to access resources and provides evidence that the

Originator obtained authorization from the appropriate sources. There are two "classes" of the authorization

grant. Some authorization grants are presented directly to the Host CSE as access tokens. Other authorization

grants cannot be used in this way, and the Originator obtains a separate access token from the Authorization

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI TTA, TTC) Page 21 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Server; in this case, the authorization grant is presented to the Authorization Server to prove that the Originator

has obtained authorization from the appropriate sources.

Some scenarios are better suited to issuing an authorization grant which is used directly as an access token. Other

scenarios are better suited to issuing an authorization grant for which separate access tokens are obtained from an

Authorization Server. Allowing both options provides flexibility.

An authorization grant is typically used is scenarios relying on the approval of the resource owner to enable access

control. However in many M2M use case, the resource owners (i.e. the humans on behalf of which the M2M entities

operate) cannot be expected to be easily reachable, whereas they would be able to configure the authorization server to

make such decisions by itself.

Table 6.2.1-1 lists the functional roles in the DAA1 reference model. Clause 6.2.2 describes the functions associated

with these functional roles. A oneM2M entity can assume multiple roles in this architecture model.

These functional roles generally correspond to functional roles defined for OAuth 2.0 [i.6]; the main difference is the

partitioning of the OAuth 2.0 Resource Owner into a Grant Issuer CSE and Grant Approver, and additionally some

names are changed (mostly to align with existing oneM2M terminology). The rationale behind partitioning the

Resource Owner functionality is the following:

 The Authorization Server or the Host CSE (whichever processes the authorization grant) verifies the digital

signature or MIC protecting the authorization grant. Consequently, the Authorization Server or the Host CSE

is configured with credentials for verifying that digital signature or MIC.

 An architecture where the Grant Approver provides the digital signature or MIC (for the authorization grant)

will rely on the Authorization Server or Host CSE managing credentials and identifiers for all possible Grant

Approvers.

 A Grant Issuer can issue authorization grants for multiple Grant Approvers, and there are expected to be

significantly fewer Grant Issuer than Grant Approvers.

 An architecture where the Grant Issuer provides the digital signature or MIC (for the authorization grant) will

have significantly simplify credential management for the Authorization Server or Host CSE; when compared

to an architecture where the Grant Approver provides the digital signature or MIC for the authorization grant.

The DAA1 reference model assumes the following sequence of events take place:

0) The Originator learns that an access token is a precondition to accessing some resources on the Host CSE.

1) Obtaining an authorization grant:

a) The Originator sends a request to the Grant Issuer, asking to be issued an authorization grant which can

be used by the Originator to access resources on the Host CSE.

b) The Grant Issuer forwards the request to a Grant Approver that has sufficient permissions to approve

issuing the requested authorization grant. The Grant Approver obtains a decision on issuing the

authorization grant. For example, this process can include obtaining explicit approval from a person, or

using an authorization architecture such as described in oneM2M TR-0016 [i.5]. The Grant Approver,

then returns its decision (permitted or denied) to the Grant Issuer.

c) On obtaining approval, the Grant Issuer forms an authorization grant, and returns this authorization grant

to the Originator.

2) Obtaining an access token (if applicable): If the authorization grant cannot be presented to the Host CSE as

an access token, then the Originator obtains an access token from the Authorization Server. The authorization

grant is presented to the Authorization Server to prove that the Originator has obtained authorization from the

appropriate source(s). Typically, an access token's lifetime is shorter than that of an authorization grant, and

each authorization grant is re-used to obtain a series of access tokens (until the authorization grant expires).

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI TTA, TTC) Page 22 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

3) Accessing a resource using an Access Token. The Originator sends the access token with the request sent to

the Host CSE. The Host CSE verifies the access token and (for the purposes of processing the request) uses the

permissions represented by the access token. Each access token is typically reused with multiple requests (until

the access token expires).

Table 6.2.1-1: List of DAA1 functional roles

DAA1 Functional
Role

Corresponding
OAuth 2.0 Role

[i.6]

Description Details
in clause

Originator Client See oneM2M TS-0001 [i.2]. Interacts with Grant
Issuer and (Optionally) authorization servers to obtain
authorization to access resources on the Host CSE.

6.2.2.1

Host CSE Resource Server See oneM2M TS-0001 [i.2]. Accepts authorizations
issued by Authorization Server.

6.2.2.2

Grant Issuer Resource Owner An intermediary between the Originator and Grant
Approver. This entity is recognized by the
authorization server and Host CSE as having
permission to issue authorization grants on behalf of
Grant Approvers.

6.2.2.3

Grant Approver This entity has permission to approve or deny issuing
an authorization grant. For a given resource, there
can be multiple entities permitted to be the Grant
Approver for that resource.

6.2.2.4

Authorization
Server

Authorization
Server

This entity issues access tokens to Originators
presenting valid authorization grants.

6.2.2.5

Table 6.2.1-2 lists the DAA1 reference points. Where a oneM2M entity assumes multiple functional roles, the reference

points can be internal to that entity. Clause 6.2.3 describes the reference points in the DAA1 reference model.

Table 6.2.1-2: List of DAA1 reference points

Reference
Point

Identifier

Reference Point
Descriptive

Name

End Points Description Details
in clause

Dagi DAA1
Authorization
Grant Issuance

Originator,
Grant Issuer

Used for requesting and issuing authorization grants 6.2.3.1

Daga DAA1
Authorization
Grant Approval

Grant Issuer,
Grant Approver

Used for obtaining approval to issue authorization grants 6.2.3.2

Dati DAA1 Access
Token Issuance

Originator,
Authorization
Server

Used for requesting and issuing access tokens 6.2.3.3

Datu DAA1 Access
Token Usage

Originator,
Host CSE

Providing an access token as authorization to act on one
or more resources

6.2.3.4

Dagd DAA1
Authorization
Grant Data

Grant Issuer,
Authorization
Server

Defines how authorization grants are formed at the Grant
Issuer and processed at the Authorization Server. This
data can traverse the Dagi and Dati reference points.

6.2.3.5

Datd DAA1 Access
Token Data

Authorization
Server, Host
CSE

Defines how access tokens are formed at the
Authorization Server and processed at the Host CSE. This
data can traverse the Dati and Datu reference points.

6.2.3.6

6.2.2 DAA1 Functional Roles

6.2.2.1 Originator

An Originator performs the following functions within the scope of DAA:

 Interact with a Grant Issuer to request and receive an authorization grant.

 Interact with an Authorization Server to present an authorization grant and receive an access token in return.

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI TTA, TTC) Page 23 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

 Interact with a Host CSE to present an access token and receive access to one or more resources at the Host

CSE.

6.2.2.2 Grant Issuer

A Grant Issuer performs the following functions within the scope of DAA:

 Receive, from an Originator, a request to issue an authorization grant.

 Verify that the identified Grant Approver has permission to approve authorization grants with the requested

scope.

 Interact with a Grant Approver to receive a decision (allow/deny) regarding issuing an authorization grant.

 Issue an approved authorization grant.

 Send the authorization grant to the Originator.

6.2.2.3 Grant Approver

A Grant Approver performs the following functions within the scope of DAA:

 Receive, from the Grant Issuer, a request for approval to issue an authorization grant.

 Obtain a decision (allow or deny) regarding issuing an authorization grant. The details of this function is not

specified in this document.

 Send the decision (allow or deny) to the Grant Issuer.

Examples of entities assuming the functional role of Grant Approver can include:

 A oneM2M AE on a user device (such as a smartphone, tablet or laptop), where the user device provides a user

interface for approving authorization grants.

 A web server through which the user can approve authorization grants - with the user interface (for approving

authorization grants) provided by a web-page or other application on a user device.

 A web server configured with policies for making automated decisions - much like a Policy Decision Point

(PDP) in the authorization architecture proposed in oneM2M TR-0016 [i.5].

6.2.2.4 Authorization Server

An Authorization Server performs the following functions within the scope of DAA:

 Receive, from an Originator, a request to issue an access token which includes an authorization grant.

 Verify that the authorization grant is valid.

 Issue the requested access token, if permitted by the authorization grant.

 Send the access token to the Originator.

The Authorization Server is expected to be configured with policies allowing it to determine the validity of the

authorization grant - in particular:

 The Authorization Server might be configured with credentials to verify the authenticity of the authorization

grant (that is, verify that the Grant Issuer genuinely issued this authorization grant).

 The Authorization Server is configured with the range of permissions on the Host CSE for which the Grant

Issuer is allowed to issue authorization grants.

 (If this feature is desirable) The Authorization Server is configured with the range of permissions on the Host

CSE for which the Grant Approver is allowed to approve issue authorization grants.

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI TTA, TTC) Page 24 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

6.2.2.5 Host CSE

A Host CSE performs the following functions within the scope of DAA:

 Receive, from an Originator, a request to perform actions on one or more resources, accompanied by an access

token.

 Verify that the access token is valid.

 Perform the requested actions, if permitted by the access token.

 Send the access token to the Originator.

The Host CSE is expected to be configured with policies allowing it to determine the validity of the access token, in

particular:

 The Host CSE might be configured with credentials to verify the authenticity of the access token (that is, the

Host CSE might verify that the Grant Issuer or Authorization Server genuinely issued this access token).

 The Host CSE is configured with the range of permissions on the Host CSE for which the access token issuer

(Grant Issuer or Authorization Server) is allowed to issue authorization grants.

 (If this feature is desirable) The Host CSE is configured with the range of permissions on the Host CSE for

which the Grant Approver is allowed to approve issue authorization grants.

6.2.3 DAA1 Reference Points

6.2.3.1 DAA1 Authorization Grant Issuance (Dagi) Reference Point

This reference point is between the Originator and the Grant Issuer.

This reference point can enable some or all of the following features (depending on design choices discussed in clause

7):

 Enabling the Originator to request an authorization grant from the Grant Issuer. This can include:

- Enabling the Grant Issuer to verify which Originator sent the request (for example, using a digital

signature or MIC).

- Enabling the Originator to identify a Grant Approver to approve the request.

- Enabling the Originator to identify the applicable Host CSE(s).

- Enabling the Originator to indicate the scope of permissions to be granted by the authorization grant.

Clause 7 will discuss how this scope is indicated.

EXAMPLE: The scope can be a set of resources or a "role" used in an accessControlPolicy resource.

- Enabling the Originator to identify the Authorization Server which will issue access tokens.

- A desired time window for the authorization grant.

 Enabling the Grant Issuer to send a respond to the Originator ,which can comprise:

- providing an error message; or

- providing an authorization grant or a unique identifier for the authorization grant (which can be

subsequently used by the Authorization Server to retrieve the authorization grant). The Grant Issuer can

also provide additional information that the Originator might utilize regarding the authorization grant.

 Enabling the Originator and Grant Issuer to establish a credential that the Originator will use to prove to the

Authentication Server that the authorization grant was issued to the Originator. This can impact the request

and/or response across this reference point.

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI TTA, TTC) Page 25 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

6.2.3.2 DAA1 Authorization Grant Approval (Daga) Reference Point

This reference point is between the Grant Issuer and the Grant Approver.

This reference point can enable some or all of the following features (depending on design choices discussed in clause

7):

 Enabling the Grant Issuer to request approval, from the Grant Approver, to issue an authorization grant on

behalf of the Grant Approver. This can include:

- Providing details of the Originator's request for an authorization grant (see clause 6.2.3.1 "DAA1

Authorization Grant Issuance (Dagi) Reference Point").

- Suggesting a different time window for the authorization grant.

- Suggesting an authorization grant type.

 Enabling the Grant Approver to send a respond to the Grant Issuer which can comprise:

- Decision (approved/denied).

- Selected time window.

- Selected authorization type.

The Grant Approver can be a oneM2M entity (CSE or AE), but the architecture reference model also allows the Grant

Approver to be a non-oneM2M entity, provided it can communicate with the Grant Issuer. Consequently, while this

reference point can involve communication between two oneM2M entities over Mcc or Mca, it is also possible that this

reference point can involve communication over non-oneM2M reference points.

6.2.3.3 DAA1 Access Token Issuance (Dati) Reference Point

This reference point is between the Originator and the Authorization Server.

This reference point can enable some or all of the following features (depending on design choices discussed in clause

7):

 Enabling the Originator to request an access token from the Authorization Server. This can include:

- Providing an authorization grant or a unique identifier for the authorization grant (which can be

subsequently used by the Authorization Server to retrieve the authorization grant).

- Enabling the Authorization Server to verify that the Originator which sent the request is also the

Originator to whom the authorization grant was issued (for example, using a digital signature or MIC).

- Enabling the Originator to indicate the scope of permissions to be granted by the access token (if smaller

than the scope of permissions represented by the authorization token). Clause 7 will discuss how this

scope is indicated.

EXAMPLE: The scope can be a set of resources or a "role" used in an accessControlPolicy resource.

 Enabling the Authorization Server to send a respond to the Originator ,which can comprise:

- providing an error message; or

- providing an access token or a unique identifier for the access token (which can be subsequently used by

the Host CSE to retrieve the access token). The Authorization Server can also provide additional

information that the Originator might utilize regarding the access token.

 Enabling the Originator and Authorization Server to establish a credential that the Originator will use to prove

to the Host CSE that the authorization grant was issued to the Originator. This can impact the request and/or

response across this reference point.

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI TTA, TTC) Page 26 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

6.2.3.4 DAA1 Access Token Usage (Datu) Reference Point

This reference point is between the Originator and the Host CSE.

This reference point can enable some or all of the following features (depending on design choices discussed in clause

7):

 Enabling the Originator to provide an access token with a request to act on a resource(s) to the Host CSE. This

can include:

- Providing an access token or a unique identifier for the access token (which can be subsequently used by

the Host CSE to retrieve the access token).

- Enabling the Host CSE to verify that the Originator which sent the request to act on resource(s) is also

the Originator to whom the access token was issued (for example, using a digital signature or MIC).

 Enabling the Host CSE to provide an error message to the Originator, which can comprise:

- Identifying that the access token is no longer valid.

- Identifying an authorization server that the Host CSE allows to issue access tokens. This is used when

either no access token was provided, or an access token was provided but not recognized by the Host

CSE.

6.2.3.5 DAA1 Authorization Grant Data (Dagd) Reference Point

This reference point is between the Grant Issuer and the Authorization Server.

This reference point defines how authorization grants are formed at the Grant Issuer and processed at the Authorization

Server.

The authorization grant data can traverse the Daga and Dati reference points via the Originator.

Alternatively, the authorization grant data can be communicated directly from the Grant Issuer to the Authorization

Server, with the Daga and Dati reference points communicating a unique identifier for the authorization grant (rather

than communicating the authorization grant data itself). This alternative can suit scenarios where the roles of Grant

Issuer and Authorization Server are assumed by a single entity.

This reference point can enable some or all of the following features (depending on design choices discussed in clause

7):

 Identify the Originator authorized by the authorization grant.

 Identify the Grant Issuer that issued the authorization grant.

 Verify that the identified Grant Issuer issued the authorization grant.

 Identify the Grant Approver that approved issuing the authorization grant.

 Identify the Authorization Server for which the authorization grant is intended.

 Identify the Host CSE(s) for which resulting access token(s) are intended.

 Identify the permissions represented by the authorization grant.

 Identify the time window within which the authorization grant is valid.

6.2.3.6 DAA1 Access Token Data (Datd) Reference Point

This reference point is between the Authorization Server and the Host CSE.

This reference point defines how access tokens are formed at the Authorization Server and processed at the Host CSE.

The access token data can traverse the Dati and Datu reference points via the Originator.

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI TTA, TTC) Page 27 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Alternatively, the access token data can be communicated directly from the Authorization Server to the Host CSE, with

the Dati and Datu reference points communicating a unique identifier for the access token (rather than communicating

the access token data itself). This alternative can suit scenarios where the roles of Authorization Server and Host CSE

are assumed by a single CSE.

This reference point can enable some or all of the following features (depending on design choices discussed in clause

7):

 Identify the Originator authorized by the access token.

 Identify the Authorization Server that issued the access token.

 Verify that the identified Authorization Server issued the access token.

 Identify the authorization grant used as the basis for issuing this access token.

 Identify the Grant Issuer that issued the authorization grant.

 Identify the Grant Approver that approved issuing the authorization grant.

 Identify the Host CSE(s) for which the access token is intended.

 Identify the permissions represented by the access token.

 Identify the time window within which the access token is valid.

6.3 Dynamic Authorization Architecture Proposal 2 (DAA2)
Reference Model

6.3.1 Access Token Issuance Architecture

Figure 6.3.1-1 provides a high level overview of a generic token issuance architecture. This architecture includes the

following entities.

Originator

Token

Authority

Hosting CSE

Token

Token

Token

Authorization

Function

Security

Function

Token Is
suance

Key and Token Issuing

Privileges Provision

Resource Access

Figure 6.3.1-1: DAA2 Token issuance architecture

Table 6.3.1-1 lists the functional roles in the DAA2 reference model. An oneM2M entity can assume multiple roles in

this architecture model.

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI TTA, TTC) Page 28 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Table 6.3.1-1: List of DAA2 Functional Roles

DAA2 Functional Role Corresponding
OAuth 2.0 Role [i.6]

Description

Originator Client See oneM2M TS-0001 [i.2]. This entity is the holder of an Access
Token. It uses Access Tokens to get permission for accessing
resources.

Token Authority Authorization Server This entity is responsible for issuing Access Tokens.

Host CSE Resource Server See oneM2M TS-0001 [i.2]. This entity provides the services of
accessing resources according to privileges described in Access
Tokens.

The Token Authority can contact a Token Authorization Function to determine or confirm the privileges to be included

in an Access Token. The Token Authority can contact a Security Function to generate signed and/or encrypted Access

Tokens. The present document does not describe the functional roles of Token Authorization Function and Security

Function, and does not describe the interactions with these entities.

6.3.2 General Procedure of Token Issuance and Use in DAA2

The generic procedure of token issuance and use in DAA2 is shown in figure 6.3.2-1 and described as follows.

Originator Token Authority Hosting CSE

2:Security association establishment

3:Access token request

4.1:Check access control policies

4.2:Check access token issuing privileges

4.3:Check access token authorization policies

4.4:Generate access token plaintext

4.5:Sign and/or encrypt the token

7:Security association establishment

5:Access token response

8:Access request with access token

10:Access response

9.1:Decrypt and/or verify The token

9.2:Check access token issuing privileges

9.3:Check access token revocation list

9.4:Evaluate the privileges in access token

9.5:Perform the requested resource access

6:Issue access token revocation list

1:Key and token issuing privilegs provision

Figure 6.3.2-1: Generic process of Access Token issuance and use in DAA2

1) The Token Authority and the Hosting CSE are pre-configured with the keys used for generating or verifying

access tokens and Access Token Issuing Privileges of the Token Authority.

2) The Originator and the Token Authority establish security association through mutual authentication to ensure

the integrity and confidentiality of communications between the two entities.

3) The Originator sends Access Token Request to the Token Authority.

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI TTA, TTC) Page 29 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

4) The Token Authority CSE carries out the following operations:

1) Check if the Originator has the privileges of accessing the target resource according to the ACP.

2) Check if the requested privileges are within the Access Token Issuing Privileges of the Token Authority.

This operation can be performed by a Token Authorization Function on behalf of the Token Authority.

3) Check if the Originator can obtain the privileges described in the Access Token Request according to the

Access Token Authorization Policies. This operation can be performed by a Token Authorization

Function on behalf of the Token Authority.

4) Generate access token plaintext.

5) Sign and/or encrypt the access token plaintext.

5) The Token Authority returns the issued Access Token back to the Originator.

6) It is also possible for the Token Authority to store the Access Token and inform the Originator where to

retrieve it.

7) The Token Authority can also issue an Access Token Revocation List in which the revoked Access Tokens

that are still not expired are placed.

8) The Originator and the Hosting CSE establish security association through mutual authentication to ensure the

integrity and confidentiality of communications between the two entities.

9) The Originator sends a resource access request to the Hosting CSE.in which one or multiple Access Tokens

are included

10) The Hosting CSE extracts the Access Tokens from the resource access request, and carries out the following

operations:

1) Decrypt and/or verify the Access Token.

2) Check if the privileges in the Access Token are within the Access Token Issuing Privileges of the Token

Authority.

3) Check if this Access Token has been revoked against an Access Token Revocation List.

4) Evaluate the Originator's resource access request based on the privileges in the Access Token.

5) Perform the requested resource access.

11) The Hosting CSE returns the execution result back to the Originator.

6.4 Dynamic Authorization Architecture Proposal 3 (DAA3)
Reference Model

6.4.1 Overall Description

Figure 6.4.1-1 shows the oneM2M Dynamic Authorization Architecture proposal 3 (DAA3) reference model. The

DAA3 reference model is similar to that used for OAuth 2.0 [i.6], borrowing some ideas from UMA [i.7]. The figure

shows logical reference points; communication paths for a reference point can pass through other entities shown in the

diagram, and through additional entities not shown in the figure. In the context of DAA3, and access token is analogous

to a UMA requesting party token (RPT).

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI TTA, TTC) Page 30 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Token Subject
(Originator)

Requesting Token
Authority

Issuing Token
Authority

Token Consumer
(Host CSE)

Dsa

Daa

Dca

(Dca messages can be communicated directly or through Token Subject
and Requesting Token Authority via Dsc, Dsa & Daa reference points)

Infrastructure Domain

Dsc

In Field and/or
Infrastructure Domain

Figure 6.4.1-1: oneM2M Dynamic Authorization Architecture Proposal 3 (DAA3) Reference Model.

Table 6.4.1-1 lists the functional roles in the DAA3 reference model. Clause 6.4.2 describes the functions associated

with these functional roles.

Table 6.4.1-1: List of DAA3 functional roles

DAA3
Functional

Role

Corresponding
OAuth 2.0 Role [i.6]

DAA3
Sub-Roles

Description Details
in clause

Token Subject Client - See oneM2M TS-0001 [i.2]. The entity being
provided with authorization to access resources on
the Token Consumer. The Token Subject's Token
Authority obtains access tokens for this entity

6.4.2.1

Token
Authority

Authorization Server Requesting
Token Authority

Obtains access tokens on behalf of the Token
Subject. This entity interacts with the Issuing Token
Authority to provide information about the Token
Subject.

6.4.2.2.1

Issuing Token
Authority

This entity issues access tokens, to Token
Subjects, which are trusted by the Token
Consumer. This entity interacts with the Requesting
Token Authority to obtain information about the
Token Subject for use in deciding whether to issue
an access token.

6.4.2.2.2

Token
Consumer

Resource Server - See oneM2M TS-0001 [i.2]. Accepts authorizations
issued by the Issuing Token Authority.

6.4.2.3

These functional roles generally correspond to functional roles defined for OAuth 2.0 [i.6] and UMA [i.7]:

 The role of the OAuth 2.0/UMA client is called the Token Subject in DAA3 - this corresponds to the oneM2M

Originator with respect to the resource access request for which the access token provides authorization.

 The role of the OAuth 2.0/UMA resource server is called the Token Consumer in DAA3 - this corresponds to

the oneM2M Host CSE with respect to the resource access request for which the access token provides

authorization.

 The role of the OAuth 2.0/UMA resource owner corresponds to a stakeholder and not a functional entity. The

interactions with this stakeholder can be proprietary and would be managed by the Token Authority in this

reference model. Further, the nature of "ownership" is very complex in M2M use cases - so this term has the

potential cause confusion. Consequently, the DAA3 reference model does not include a functional role

equivalent to the OAuth 2.0/UMA resource owner.

 The role of the OAuth 2.0/UMA authorization server is called Token Authority in DAA3 - primarily to clarify

that this entity provides authorization by providing the Token Subject with an access token (as differentiated

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI TTA, TTC) Page 31 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

from services described in oneM2M TR-0016 [i.5]). The Token Authority is assumed to reside in the

Infrastructure Domain. A Token Authority can assume one or both of the following roles with respect to the

Token Consumer and Token Subject:

- If a Token Consumer accepts tokens issued by the Token Authority, then the Token Authority can

assume the role of Issuing Token Authority with respect to the Token Consumer. The DAA3 reference

model assumes that a trust relationship exists between the Token Consumer and the Issuing Token

Authority.

- The Issuing Token Authority makes the decision to issue a token based on policy and trustworthy

information about the Token Subject client and/or stakeholder on whose behalf the Token Subject is

requesting access (in UMA this stakeholder is called the requesting party). In cases where the Issuing

Token Authority does not have direct access to the trustworthy information about the Token Subject

and/or UMA requesting party, then the Issuing Token Authority is provided this information by a trusted

third party. In UMA [i.7], the OAuth 2.0 authorization server can request information via Token Subject,

and the Token Subject to present "claims" containing this information. However, this interaction - along

with the interactions necessary to obtain the "claims" introduces multiple round trips of communication

involving the Token Subject. If the Token Subject is in the Field Domain, then this introduces a large

overhead in terms of time and communication. In M2M scenarios, it is much more efficient for an entity

in the infrastructure domain to act as a proxy for the Token Subject, interacting with the Issuing Token

Authority to request an access token on behalf of the Token Subject and provide the information

requested by the Issuing Token Authority. The DAA3 reference model assumes that entity assuming this

functionality is also a Token Authority. The role of this entity in DAA3 is the Requesting Token

Authority. There is no corresponding functional role in OAuth 2.0 or UMA. The DAA3 reference model

assumes that:

 a trust relationship exists between the Token Subject and the Requesting Token Authority; and

 a trust relationship exists between the Requesting Token Authority and the Issuing Token

Authority.

 The DAA3 reference model allows a Token Authority to assume the roles of both the Issuing Token

Authority and Requesting Token Authority. In particular, if a trust relationship exists between the Token

Subject and the Issuing Token Authority, then the Issuing Token Authority can also assume the role of

Requesting Token Authority.

There are two main options for securing the interactions between Token Consumer and Issuing Token Authority (over

Dca):

 The Token Consumer is "online" if the Token Consumer can establish a secure association (e.g. TLS or DTLS)

with the Issuing Token Authority. In this case, the Token Consumer and Issuing Authority would exchange the

authorization data details and access token details directly (secured by TLS or DTLS), and the only data

passed via the Token Subject are "pointers" to the authorization data details and access token details.

 The Token Consumer is "offline" if the Token Consumer cannot establish a secure association with the Issuing

Token Authority, and instead end-to-end security is used. In this case, the Token Consumer and Issuing

Authority can exchange the authorization data details and access token details (secured end-to-end) either

directly or via the Token Subject.

Similarly, there are two main options for securing the interactions between Token subject and Requesting Token

Authority (over Dsa):

 The Token Subject is "online" if the Token Subject can establish a secure association (e.g. TLS or DTLS) with

the Requesting Token Authority.

 The Token Subject is "offline" if the Token Subject cannot establish a secure association with the Requesting

Token Authority, and instead end-to-end security is used.

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI TTA, TTC) Page 32 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

The DAA3 reference model assumes the following sequence of events take place (a detailed message flow is provided

in clause 6.4.4) - alternative flows are possible, and are considered in clause 8.

0) Setup (These procedures are not addressed in the present document):

- The Issuing Token Authority is provided with policies governing issuing access tokens covering

authorization data provided by the Token Consumer. The policy descriptions are not addressed in the

present document.

- The Requesting Token Authority is provided with information about the Token Subject which can be

passed to Token Authorities for making token-issuing decisions.

- The Token Subject is configured with the identity of the Requesting Token Authority which interacts

with the Issuing Token Authority, on behalf of the Token subject, to obtain access tokens. The

Requesting Token Authority and the Token Subject have credentials for securing communication

between those entities (that is, the Dca reference point). These credentials can be used for security

association establishment (providing "online" security) or for end-to-end security (providing "offline"

security). The Token Subject can be configured for multiple Requesting Token Authorities, which are

contacted to see if they are able to interact with the Issuing Token Authority on behalf of the Token

Subject.

- The Issuing Token Authority and the Token Consumer are pre-configured with the Access Token Issuing

Privileges of the Issuing Token Authority. The Issuing Token Authority and the Token Consumer are

pre-configured with the credentials for securing communication between those entities (that is, the Dca

reference point). These credentials can be used for security association establishment (providing "online"

security) or for end-to-end security (providing "offline" security).

NOTE: The subsequent steps can depend on whether the Token Consumer is online or offline, and whether the

Token Subject is online or offline and whether the Token Subject communicates with the Request Token

Authority via the Token Consumer or independent from the Token Consumer. The current description

assumes that the Token Consumer is offline and that the Token Subject communicates with the Request

Token Authority independent from the Token Consumer.

1) Initialization (Optional - if the Token Subject already knows submitTo and authData, then these steps

can be skipped): The Token Subject submits a resource access request for which the Token Consumer

determines that the Token Subject does not have sufficient permissions. In response, the Token Consumer:

a) Denies the Token Subject's request to access resources.

b) Identifies where access token requests can be submitted to the appropriate Issuing Token Authority.

c) Provides the authorization data to be used by the Issuing Token Authority in composing the access

token. The authorization data describes the privileges to be provided to the Token Subject for its resource

access request- and which the Issuing Token Authority would provide when it issues the corresponding

access token (subject to the Token Subject meeting the conditions of the appropriate policies).

 This interaction occurs over the Dsc reference point.

NOTE: Initialization is not addressed in the core OAuth 2.0 specification [i.6]. UMA provides a process similar to

Initialization - in UMA, the authorization data is communicated from the Token Consumer (OAuth

2.0/UMA resource server) directly to the Issuing Token Authority (OAuth 2.0/UMA Authorization

Server), and the Token Consumer provides the Token Subject (OAuth 2.0/UMA Client) with

corresponding "permission ticket" which is then provided to the Issuing Token Authority (rather than

communicating the authorization data via the Token Subject). This assumes that the Token Consumer can

easily communicate with the Issuing Token Authority -which is not always the case for Token Consumer

in the Field Domain. Consequently, the general message flow for DAA3 in clause 6.4.4 "Example

Procedure of Access Token Issuance and Use in DAA3" assumes the authorization data is communicated

via the Token Subject. Clause 8 can explore the use of "permission tickets" and other optimizations.

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI TTA, TTC) Page 33 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

2) Obtaining an Access Token: The Token Subject forwards the returned information to a Requesting Token

Authority. If the Requesting Token Authority approves obtaining a token, then the Requesting Token

Authority provides the Issuing Token Authority with the forwarded authorization data and any additional

applicable information about the Token Subject used by the Issuing Token Authority's decision process. The

Issuing Token Authority applies policies to decide whether to issue an access token. For example, this process

can include obtaining explicit approval from a person, or using an authorization architecture such as described

in oneM2M TR-0016 [i.5]. The Issuing Token Authority generates an access token, and returns this to the

Requesting Token Authority. The Requesting Token Authority forwards the access token to the Token

Subject. This interaction occurs over the Dsa and Daa reference points.

3) Accessing a resource using an Access Token: The Token Subject sends the access token with the request

sent to the Token Consumer. The Token Consumer verifies the access token and (for the purposes of

processing the request) uses the permissions represented by the access token. Each access token is typically

reused with multiple requests (until the access token expires). This interaction occurs over the Dsc reference

point.

Table 6.4.1-2 lists the DAA3 reference points. Where an oneM2M entity assumes multiple functional roles, the

reference points can be internal to that entity. Clause 6.4.3 describes the reference points in the DAA3 reference model.

Table 6.4.1-2: List of DAA3 reference points

Reference
Point

Identifier

Reference Point
Descriptive

Name

End Points Description Details
in clause

Dsa DAA3 Subject-to-
Authority

Token Subject,
Requesting Token
Authority

Requesting the Requesting Token Authority to obtain
an access token on behalf of the Token Subject.

6.4.3.1

Daa DAA3 Authority-
to-Authority

Requesting Token
Authority, Issuing
Token Authority

Used for requesting and issuing access tokens. 6.4.3.2

Dsc DAA3 Subject-to-
Consumer

Token Subject,
Token Consumer

Serves two purposes:
1) the Token Consumer providing the Token

Subject with information for obtaining an access
token; and

2) the Token Subject providing the Token
Consumer with an access token as authorization
to act on one or more resources.

6.4.3.3

Dca DAA3 Consumer-
to-Authority

Token Consumer,
Issuing Token
Authority

Defines how the Token Consumer and Issuing Token
Authority exchange authorization data and access
tokens. This data traverses the remaining reference
points (Dsc, Dsa, Daa).

6.4.3.4

6.4.2 DAA3 Functional Roles

6.4.2.1 Token Subject

A Token Subject performs the following functions within the scope of DAA3:

 Receive information from the Token Consumer enabling the Token Subject to request an access token suitable

for requested resource access.

 Requesting the Requesting Token Authority to obtain an access token on behalf of the Token Subject. Where

the Token Subject is configured with the addresses of multiple Requesting Token Authorities, the Token

Subject asks Requesting Token Authorities until a Requesting Token Authority is found which can obtain an

access token on behalf of the Token Subject.

 Interact with a Token Consumer to present an access token and receive access to one or more resources at the

Token Consumer.

Assumptions regarding the Token Subject:

 The Token Subject is configured with the addresses of one or more Requesting Token Authorities which, on

behalf of the Token Subject, might be able to interact with the Issuing Token Authority.

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI TTA, TTC) Page 34 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

6.4.2.2 Token Authority

6.4.2.2.1 Introduction

Within the scope of DAA3, a Token Authority is able to perform the functions of:

 a Requesting Token Authority, described in clause 6.4.2.2.1 "Requesting Token Authority"; and

 an Issuing Token Authority, described in clause 6.4.2.2.2 "Issuing Token Authority".

6.4.2.2.2 Requesting Token Authority

A Requesting Token Authority performs the following functions within the scope of DAA3:

 Receive, from the Token Subject, a request to obtain an access token which includes authorization data and

identifies where the access token request is to be submitted.

 Apply policies to decide if the Requesting Token Authority submits a token request to the Issuing Token

Authority on behalf of the Token Subject.

 Any obligations on the part of the Requesting Token Authority (for example, obtaining explicit approval from

a user or administrator for individual token requests) are not detailed in the present document.

 Submit a request to the identified Issuing Token Authority, including the authorization data.

 Provide necessary information about the Token Subject to the Issuing Token Authority.

 Receive an access token from the Issuing Token Authority.

 Forward the access token to the Token Subject.

Assumptions regarding the Requesting Token Authority:

 The Requesting Token Authority is assumed to be configured to interact with the Issuing Token Authority on

behalf of the Token Subject.

 The Requesting Token Authority is expected to be configured with policies regarding decisions to request

access tokens.

Examples of entities that can assume this functional role can include:

 A web server through which the user can approve authorization grants - with the user interface (for approving

authorization grants) provided by a web-page or other application on a user device.

 A web server configured with policies for making automated decisions if the Requesting Token Authority

submits a token request to the Issuing Token Authority on behalf of the Token Subject - much like a Policy

Decision Point (PDP) in the authorization architecture proposed in oneM2M TR-0016 [i.5].

6.4.2.2.3 Issuing Token Authority

A Issuing Token Authority performs the following functions within the scope of DAA3:

 Receive, from a Requesting Token Authority, a request on behalf of the Token Subject to issue an access token

which includes authorization data.

 Apply end-to-end security processes to the authorization data in the access token request if applicable (e.g.

decryption, signature verification).

 Determine applicable policies for the authorization data, including determining what information about the

Token Subject is applicable.

 Obtain necessary information about the Token Subject from the Requesting Token Authority which submitted

the access token request on behalf of the Token Subject.

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI TTA, TTC) Page 35 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

 Any obligations on the part of the Issuing Token Authority (for example, obtaining explicit approval from a

user or administrator for individual token requests) are not detailed in the present document.

 Make decisions whether to issue an access token providing the privileges described in the authorization data.

 Issue the requested access tokens.

 (Optionally) Apply end-to-end security processes to the access token (e.g. encryption signature generation),

with the corresponding security processing to be applied by the Token Consumer.

 Send the access token to the Requesting Token Authority.

Assumptions regarding the Issuing Token Authority:

 The Issuing Token Authority is expected to be configured with policies.

 regarding issuing access tokens providing permission to access resources on the Token Consumer, Access

Token Issuing Privileges of the Issuing Token Authority; that is, the range of privileges on the Token

Consumer for which the Issuing Token Authority is allowed to issue access token.

 The Issuing Token Authority can be configured with credentials for securing the authorization data received in

the access token request (for example, the Token Consumer can encrypt the authorization data for privacy

reasons).

 The Issuing Token Authority can be configured with credentials for authentication of the issued access token

(that is, the Token Consumer might verify that the Issuing Token Authority genuinely issued this access token)

and/or encrypting the access token (for subsequent decryption by the Token Consumer).

Examples of entities that can assume this functional role can include:

 A web server through which the user can approve authorization grants - with the user interface (for approving

authorization grants) provided by a web-page or other application on a user device.

 A web server configured with policies for making automated decisions - much like a Policy Decision Point

(PDP) in the authorization architecture proposed in oneM2M TR-0016 [i.5].

6.4.2.3 Token Consumer

A Token Consumer performs the following functions within the scope of DAA3:

 Form authorization data to be used by the Issuing Token Authority in deciding the privileges to be granted to

the Token Subject in an access token.

 Apply end-to-end security processes to the authorization data if applicable (e.g. encryption, signature

generation), with the corresponding security processing to be applied by the Issuing Token Authority.

 Send to the (optionally end-to-end secured) authorization data to the Token Subject, and identify where the

access token request is to be submitted (that is, identify the Issuing Token Authority).

 Receive, from a Token Subject, a request to perform actions one or more resources, accompanied by an access

token.

 (If the Issuing Token Authority applied end-to-end security to the access token) Apply end-to-end security

processes decrypt and or verify that the access token is valid.

 Perform the requested actions, if permitted by the access token.

Assumptions regarding the Token Consumer:

 The Token Consumer is configured with the Access Token Issuing Privileges of the Issuing Token Authority;

that is, the range of permissions that the Token Consumer will allow in access tokens issued by the Issuing

Token Authority.

 The Token Consumer is configured is configured with the address at which access token requests are to be

submitted to the Issuing Token Authority.

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI TTA, TTC) Page 36 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

 The Token Consumer can be configured with credentials for securing the authorization data (for example,

encryption can be applied for privacy reasons).

 The Token Consumer can be configured with credentials for verifying the authenticity of the access token (that

is, the Token Consumer might verify that the Issuing Token Authority genuinely issued this access token).

 If the Token Consumer and Issuing Token Authority support use of permission tickets, then the Token

Consumer is configured with the address at which permission tickets requests are to be submitted to the

Issuing Token Authority.

6.4.3 DAA3 Reference Points

6.4.3.1 DAA3 Token Subject-to-Authority (Dsa) Reference Point

This reference point is between the Token Subject and the Requesting Token Authority.

This reference point can enable some or all of the following features (depending on design choices discussed in clause

7):

 Enabling the Token Subject to obtain an access token via the Requesting Token Authority. This can include:

- The Token Subject providing the Requesting Token Authority with:

 the information provided by the Token Consumer for requesting a token, that is:

- authorization data; and

- identifying where the access token request is to be submitted.

 A desired time window for the access token.

- The Requesting Token Authority providing the Token Subject with an access token (received from the

Issuing Token Authority) or an error message.

This reference points is presumed be secured hop-by-hop using security associations, and end-to-end-security can

optionally be applied.

6.4.3.2 DAA3 Authority-to-Authority (Daa) Reference Point

This reference point is between the Requesting Token Authority and the Issuing Token Authority when these roles are

assumed by distinct entities.

This reference point can enable some or all of the following features (depending on design choices discussed in clause

7):

 Enabling the Requesting Token Authority to obtain an access token from the Issuing Token Authority. This

can include:

- The Requesting Token Authority providing the Issuing Token Authority with parameters for the access

token, including:

 The authorization data provided by the Token Consumer via the Token Subject.

 A desired time window for the access token.

- The Issuing Token Authority requesting (from the Requesting Token Authority) information about the

Token Subject that the Issuing Token Authority uses for deciding whether to issue an access token.

- The Requesting Token Authority providing the Issuing Token Authority with the requested information

about the Token Subject.

- The Issuing Token Authority providing the Requesting Token Authority with an access token or error

message.

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI TTA, TTC) Page 37 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

The reference model assumes that the Issuing Token Authority trusts the Requesting Token Authority have established

an arrangement whereby:

 The Issuing Token Authority has an expectation that the Requesting Token Authority to provide correct

information about the Token Subject to whom the access token will be provided.

 The Requesting Token Authority can have an expectation that the Issuing Token Authority will maintain

confidentiality of information shared about the Token Subject.

The details of such an arrangement are not described in the present document.

This reference point is presumed be secured directly between the Requesting Token Authority and Issuing Token

Authority, for example using a TLS security association.

6.4.3.3 DAA3 Token Subject-to-Consumer (Dsc) Reference Point

This reference point is between the Token Subject and the Token Consumer and Issuing Token Authority.

This reference point can enable some or all of the following features (depending on design choices discussed in clause

7):

 Enabling the Token Subject to provide an access token with a request to act on a resource(s) to the Token

Consumer. This can include:

- Providing an access token or a unique identifier for the access token (which can be subsequently used by

the Token Consumer to retrieve the access token).

- Enabling the Token Consumer to verify that the Token Subject which sent the request to act on

resource(s) is also the Token Subject to whom the access token was issued (for example, using a digital

signature or MIC).

 Enabling the Token Consumer to provide an error message to the Token Subject, which can comprise:

- Identifying that the access token is no longer valid.

- Identifying an Issuing Token Authority that the Token Consumer allows to issue access tokens. This is

used in the case that either no access token was provided, or an access token was provided that can not be

used for the associated request. There are a variety of reasons that an access token can not be used:

 The provided access token was issued by by an Issuing Token Authority that is not recognized by

the Token Consumer.

 The provided access token is not currently valid (yet to be valid, or already expired).

 The scope of the provided access token does not cover the requested resource(s).

This reference points is presumed be secured hop-by-hop using security associations, and end-to-end-security can

optionally be applied.

6.4.3.4 DAA3 Consumer-to-Authority (Dca) Reference Point

This reference point is between the Token Consumer and Issuing Token Authority.

This reference point:

 Defines how the Token Consumer provides authorization data to the Issuing Token Authority to use in

composing an access token. This authorization data can be communicated directly form the Token Consumer

to the Issuing Token Authority (e.g. if permissions tickets are used), or the authorization data can traverse the

Dsc, Dsa and Daa reference points via the Token Subject and Requesting Token Authority.

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI TTA, TTC) Page 38 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

 Defines how access tokens are formed at the Issuing Token Authority and processed at the Token Consumer.

The access tokens can traverse the Dsc, Dsa and Daa reference points via the Token Subject and Requesting

Token Authority. Alternatively, the access token data can be communicated directly from the Issuing Token

Authority to the Token Consumer, with the Dsc, Dsa and Daa reference points communicating an unique

identifier for the access token (rather than communicating the access token data itself). This alternative can

suit scenarios where the roles of Issuing Token Authority and Token Consumer are assumed by a single entity.

This reference point can enable some or all of the following features (depending on design choices discussed in clause

7):

 Enabling the Token Consumer to provide the Issuing Token Authority with an authorization data.

 Enabling the Issuing Token Authority to provide the Token Consumer with an access token. This can include:

- Identify the Token Subject authorized by the access token.

- Identify the Issuing Token Authority that issued the access token.

- Verify that the identified Issuing Token Authority issued the access token. This can include providing a

MIC or digital signature in the access token.

- Identify the Token Consumer(s) for which the access token is intended.

- Identify the permissions represented by the access token.

- Identify the time window within which the access token is valid.

- Identify the authorization checks that were carried out by the Issuing Token Authority.

- Identify the "authData" that was initially provided by the Token Consumer (optional).

 End-to-End security of data exchanged between the Token Consumer and Issuing Token Authority.

6.4.4 Example Procedure of Access Token Issuance and Use in DAA3

This clause provides an example message flow for DAA3 Access Token issuance and use in which the Token

Consumer communicates the authorization data to the Issuing Token Authority via the Originator and Requesting

Token Authority. Other alternatives are possible, such as discussed in clause 6.4.3.4 "DAA3 Consumer-to-Authority

(Dca) Reference Point". Most message flows will include steps similar to steps 4 through to 15. Optimizations to this

message flow can be considered in Clause 8.

The descriptions of functional roles in Clause 6.4.2 "DAA3 Functional Roles" and reference points in Clause 6.4.3

"DAA3 Reference Points" provide assumptions which are pre-requisites for the generic procedure of token issuance in

the DAA3 reference model.

Token
Subject

Token
ConsumerRequesting

Token
Authority

Issuing
Token

Authority

1. resource access request

3. resource access response (“Unauth”, submitTo, authData)

4. submitTo, authData 6. request token w/ authData

8. (o) Request Token Subject Info

11. token12. token

9. (o) Response w/ Token Subject
Info

13. resource access request (token)

15. resource access response (result)

5. Decision to
request token

10. Decision to
issue token

2. Form authData

7. Process
authData

14. Process token.
Decision to allow

access

B. Initialization
(Optional)

C. Obtaining an
Access Token

D. Accessing a
Resource with an

Access Token

A. Setup
(not shown)

Figure 6.4.4-1: General Procedure for Token Issuance and Use in the DAA3 reference model.

The generic procedure of token issuance and use is shown in figure 6.4.4-1 and described as follows:

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI TTA, TTC) Page 39 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

NOTE: This message flow borrows details from the message flow in figure 6.3.2-1.

A. Setup (Not Shown - see description in clause 6.4.1 "Overall Description").

B. Initialization (Optional - if the Token Subject already knows submitTo and authData, then these steps can be

skipped)

1) The Token Subject sends the Token Consumer a resource access request, possibly including one or more

access tokens. For the purpose of this description, it is assumed that, even with these access tokens, the Token

Subject does not have sufficient privileges for the Token Consumer to process the resource access request.

2) The Token Consumer determines that the Token Subject currently does not have sufficient privileges for the

Token Consumer to process the resource access request. The Token Consumer forms an authorization data

describing, for the Issuing Token Authority, a set of privileges to be provided to the Token Subject. The Token

Consumer can apply end-to-end security processes to the authorization data if applicable (e.g. encryption,

signature generation).

3) The Token Consumer sends a resource access response to the Token Subject containing:

- An indication that the request does not have sufficient authorization.

- submitTo: identifying where the access token request is submitted. The Token Consumer is presumed to

have been configured with this address.

- The authorization data (authData), optionally secured end-to-end (with the corresponding security

processing to be applied by the Issuing Token Authority).

C. Obtaining an Access Token

1) The Token Subject forwards submitTo and (optionally end-to-end secured) authorization data to the

Requesting Token Authority.

2) The Requesting Token Authority applies its policies to decide if the Requesting Token Authority submits a

token request to the Issuing Token Authority on behalf of the Token Subject.

3) The Requesting Token Authority sends the Issuing Token Authority a token request containing the (optionally

end-to-end secured) authorization data.

4) If the authorization data is secured end-to-end (see step 2), then the Issuing Token Authority applies

appropriate processing to decrypt and/or verify integrity of the authorization data.

NOTE 1: The Issuing Token Authority can be configured to reject tokens that are not secured end-to-end by the

Token Consumer.

 The Issuing Token Authority examines its policies to determine if additional information (about the Token

Subject and/or Requesting Party) is used in its decision to issue a token covering this authorization data.

5) (Optional) The Issuing Token Authority sends the Requesting Token Authority a request for additional

information about the Token Subject

6) (Conditional on Step 8) The Requesting Token Authority sends the Issuing Token Authority additional

information about the Token Subject.

7) The Issuing Token Authority does the following operations:

NOTE 2: The remaining steps assume that the Issuing Token Authority decided to allow issuing the access token.

1) Check if the Token Subject has the privileges of accessing the target resource according to the ACP.

2) Check if the requested privileges are within the Access Token Issuing Privileges of the Issuing Token

Authority. This operation can be performed by a Token Authorization Function on behalf of the Issuing

Token Authority.

3) Check if the Token Subject can obtain the privileges described in the Access Token Request according to

the Access Token Authorization Policies. This operation can be performed by a Token Authorization

Function on behalf of the Issuing Token Authority.

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI TTA, TTC) Page 40 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

4) Generate access token plaintext giving the Token Subject the privileges described in authorization data

received in Step 6.

5) Sign and/or encrypt the access token plaintext.

8) The Issuing Token Authority sends the Requesting Token Authority the Access Token.

9) It is also possible for the Issuing Token Authority to store the Access Token and inform the Token Subject

where to retrieve the Access Token.

10) The Requesting Token Authority sends the Token Subject the access token it received form the Issuing Token

Authority.

D. Accessing a resource using an Access Token

1) The Token Subject sends the Token Consumer a resource access request, this time including the access token

it received via the Requesting Token Authority.

2) The Token Consumer extracts the Access Tokens from the resource access request, and does the following

operations:

1) Decrypt and/or verify the Access Token.

2) Check if the privileges in the Access Token are within the Access Token Issuing Privileges of the Issuing

Token Authority.

3) Check if this Access Token has been revoked against an Access Token Revocation List. Also checks to

see if the current time is within the validity of the token.

4) Evaluate the Token Subject's resource access request based on the privileges in the Access Token.

5) Perform the requested resource access.

NOTE 3: The Token Consumer can be configured to reject tokens that are not secured end-to-end by the Issuing

Token Authority.

3) The Token Consumer returns the execution result back to the Token Subject.

6.5 Dynamic Authorization Architecture Proposal 4 (DAA4)
Reference Model

6.5.1 Overall Description

Table 6.5.1-1 lists the functional roles in the DAA4 reference model. Clause 6.5 describes the functions associated with

these functional roles.

Table 6.5.1-1: List of DAA4 functional roles

DAA4 Functional
Role

Description Details in
clause

Subject The entity being provided with authorization to access resources on the
Hosting Entity. The Subject would be authorized dynamically by an
Authorization Entity in order to access resources.

6.5.2.1

Hosting Entity This entity interacts with the Subject in order to obtain information about the
Subject that can be used for authorization checks. This entity interacts with an
Authorization entity to provide information about the Subject and request
dynamic authorization checks on the Subject.

6.5.2.2

Authorization Entity This entity performs dynamic authorization checks of the Subject based on the
information that was forwarded by a Hosting Entity. This entity sends a
response indicating authorization results and additional information that can be
used to update the access control policies at the Hosting Entity. This entity can
belong to a different operator than the Hosting Entity and can be multiple hops
away from the Hosting Entity.

6.5.2.3

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI TTA, TTC) Page 41 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

The DAA4 reference model assumes the following sequence of events take place.

0) Setup:

- The Authorization Entity is provided with policies governing processing of authorization requests and

policies governing the issuing of authorization responses.

- The Authorization Entity is pre-configured with Subject's identity and information that can be used for

performing the authorization checks.

- The Authorization Entity is provided with policies governing the authorization checks that will be carried

out on the Subject.

- The Hosting Entity is provided with the information about the Authorization Entity and pre-configured

with credentials that can be used to perform mutual authentication between the Hosting Entity and the

Authorization Entity. Similarly the Authorization Entity is pre-configured with the information

associated with the Hosting Entity and associated credentials that can be used to perform mutual

authentication between the Hosting and the Authorization entities.

- The Hosting Entity is provided with dynamic authorization policies, that governs decisions on requesting

dynamic authorization request, processing dynamic authorization results from the Authorization Entity

and updating of access control policies based on the authorization results.

- The Subject is optionally provided with security parameters that can be used for authorization checks.

1) Accessing a resource: Subject sends a resource access request to the Hosting Entity. The Hosting Entity

checks the access control policies and if there is no access policies associated with the subject then the Hosting

Entity initiates a dynamic authorization check and as per the set policies forwards an authorization request to

the Authorization Entity.

2) Authorization Checks: Based on the authorization request forwarded by the Hosting Entity, the Authorization

Entity performs one or more authorization checks based on the Subject's information that was provided within

the authorization request. The results of the authorization checks are then forwarded to the Hosting Entity by

the Authorization Entity containing information about the resource, type of operation(s) and the validity of the

authorization. The Hosting Entity updates the ACPs accordingly based on the results provided to it by the

Authorization Entity.

6.5.2 DAA4 Functional Roles

6.5.2.1 Subject

A Subject performs the following functions within the scope of DAA4:

 Perform a resource access with a Hosting Entity.

 (Optional) The Subject can be involved in authorization checks with an Authorization Entity based on the type

of authorization checks that will be carried out.

6.5.2.2 Hosting Entity

Within the scope of DAA4, a Hosting Entity is able to perform the following functions:

 Initiate a dynamic authorization check if an access control policy associated with the Subject does not exist.

The initiation of the dynamic authorization check is determined by pre-provisioned policies.

 The Hosting Entity communicates with an Authorization Entity in order to request for dynamic authorization

of the Subject's request for a resource access. The request created contains information about the Subject,

including the Subject's identity, and optionally, the resource, resource type and the type of operations.

 The Hosting Entity processes the response containing the results of the authorization check from the

Authorization Entity and updates the relevant access control policies accordingly based on the results. The

Hosting Entity is able to verify the authenticity of the authorization response message.

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI TTA, TTC) Page 42 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

6.5.2.3 Authorization Entity

Within the scope of DAA4, an Authorization Entity is able to perform the following functions:

 It is able to process the authorization request sent by the Hosting Entity.

 Based on the dynamic authorization policies as well as the Subject's information that was provided as well as

the information provided with regards to the resource and associated operations, the Authorization Entity

initiates one or more authorization checks of the Subject.

 Ability to create an authorization response containing the results of the authorization checks and send it to the

Hosting Entity. The Authorization Entity can include an authentication tag (e.g. MIC) or a digital signature

vouching for the authenticity of the authorization.

6.5.3 DAA4 Reference Points

The DAA4 uses the oneM2M standardized reference points:

 Mca: Used for communications between the Subject and the Hosting Entity. This reference point is optionally

protected by means of a (D)TLS connection.

 Mcc: Used for communications between the Hosting Entity and the Authorization Entity. This reference point

is protected by means of hop-by-hop (D)TLS connection. In addition, end-to-end security protections can be

used if the Hosting Entity and the Authorization Entity belongs to different service provider domains or if the

Entities are multiple hops away.

6.5.4 Example Procedure of Dynamic Authorization using
oneM2M reference points and primitives

This clause provides example message flow for DAA4. The oneM2M reference points and primitives are used with

having very little impact on the overall oneM2M messaging and associated resource for dynamic authorization.

Subject

(E.g. AE)
Hosting Entity (E.g. CSE)

1. Resource Access Request

Authorization Entity (E.g.

CSE)

3. Authorization Request

2. Checks ACP; No Entry;

 Checks DynAuthPolicy

4. Performs Authorization Checks

(Authentication, Payment,

Subscription..)

5. Authorization Response

6. Updates ACP with associated lifetime

7. Resource Access Response

Figure 6.5.4-1: General Proposal for Dynamic Authorization 4 (DAA4) Reference Model

The generic procedure for dynamic authorization based on oneM2M reference points and primitives shown in

figure 6.5.4-1. The detailed procedure is as follows:

1) A Subject issues a Resource Access Request to a Hosting Entity over the Mca reference point.

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI TTA, TTC) Page 43 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

2) The Hosting Entity checks the ACPs associated with the Subject and if there does not exist an ACP associated

with the request, then the Hosting Entity checks the Dynamic Authorization Policy (DynAuthPolicy). If there

is a dynamic authorization policy that can be identified based on the request, then the Hosting Entity initiates a

dynamic authorization process.

3) The Hosting Entity sends an Authorization Request to an Authorization Entity, requesting for authorization of

the Subject and optionally the resource information, the resource-type, type of operations etc. are included

within the Authorization Request.

4) The Authorization Entity based on the Authorization Request can perform one or more authorization checks

such as Subject authentication, payment verification, subscription information etc. and then generates an

authorization result.

5) The Authorization Entity sends the authorization results to the Hosting Entity using an authorization response

message. The authorization results can contain the duration of the validity of the authorization. The message is

provided with an authentication tag or digital signature particularly if the Authorization Entity is either

multiple hops away from the Hosting Entity or if the Authorization Entity belongs to a different service

provider domain.

6) The Hosting Entity verifies the authenticity of the message and then processes the authorization response. The

Hosting Entity updates the local ACP and includes an optional time validity associated with the access control

rule.

7) If the authorization results provided by the Authorization Entity matched the resource access request, then the

Hosting Entity sends a Resource Access Response message to the Subject that indicates a successful

authorization.

6.6 Dynamic Authorization Architecture Proposal 5 (DAA5)
Reference Model

6.6.1 Token Based Access Control Architecture

Figure 6.6.1-1 provides a high level overview of the token based access control architecture in the oneM2M system.

This architecture comprises two new defined entities that are described as follows:

 Token Authority: It is responsible for issuing access tokens to an Originator according to some privilege

assignment policies. These policies are however out of scope of the present document. An access token

specifies what privileges have been assigned to an Originator. The Originator can be an AE or a CSE.

 External Authorization Function: It is responsible for evaluating a privilege authorization request sent by a

Token Authority and then making a privilege authorization decision. How an External Authorization Function

being implemented is however out of scope of the present document.

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI TTA, TTC) Page 44 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Token Authority
Originator

(AE/CSE)

Hosting CSE

Registrar CSE

PDP PIP

1: Apply for token

3: Issue token

4: Create

<token> resource

5: Retrieve

<token> resource
6: Access

resource

8.2: Retrieve

<token> resource

7: Decision

request

8.1: Attribute

request

8: Retrieve

<token> resource

9: Make access control decision

External

Authorization

Function

2: Confirm

privilege

Figure 6.6.1-1: Token based access control architecture

6.6.2 Generic Procedure of Token Based Access Control

The generic token based access control procedure is shown in figure 6.6.1-1 and described as follows:

Step 001: An Originator applies for a token from a Token Authority.

Step 002: The Token Authority checks if the applied privilege can be assigned to the Originator. In case the

Token Authority is not sure whether to agree to the request locally, it can contact an External

Authorization Function for checking this request.

Step 003: After confirming the Originator's request, the Token Authority issues a token to the Originator.

Step 004: The Token Authority create a <token> resource that is used to store the token information under

the Originator's registration resource in the Originator's Registrar CSE.

Step 005: The Originator retrieves assigned tokens from its registration resource.

Step 006: The Originator sends a resource access request in which tokens are included to the Hosting CSE.

Step 007: The Hosting CSE sends access decision request to a PDP.

Step 008: In some cases, the PDP retrieves the Originator's token from the Originator's registration resource.

Step 009: The PDP verifies the Originator's token and makes an access control decision according to access

control policies and the privileges described in the token.

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI TTA, TTC) Page 45 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

7 Description and Analysis of Available Options

7.1 Proposal 1: A Solution of Access Token Issuance and Use

7.1.1 Resource Definitions for Token Issuance

7.1.1.1 Resource Type accessTokenAuthority

The <accessTokenAuthority> resource represents the method for providing the services related to access token issuance.

The <accessTokenAuthority> resource is located directly under <CSEBase>.

<accessTokenAuthority>

1

0..n

<accessTokenIssuing>

<accessToken>

Figure 7.1.1.1-1: Structure of <accessTokenAuthority> resource

The <accessTokenAuthority> resource contains the child resources specified in table 7.1.1.1-1.

Table 7.1.1.1-1: Child resources of <accessTokenAuthority> resource

Child Resources of
<authorization>

Child Resource Type Multiplicity Description

[variable] <accessTokenIssuing> 1 See clause 7.1.1.2

[variable] <accessToken> 0..n See clause 7.1.1.3

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI TTA, TTC) Page 46 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

The <accessTokenAuthority> resource contains the attributes specified in table 7.1.1.1-2.

Table 7.1.1.1-2: Attributes of <accessTokenAuthority> resource

Attributes of
<statsConfig>

Multiplicity
RW/
RO/
WO

Description

resourceType 1 RO See clause 9.6.1.3 of oneM2M TS-0001 [i.2] where this
common attribute is described

resourceID 1 RO See clause 9.6.1.3 of oneM2M TS-0001 [i.2] where this
common attribute is described.

resourceName 1 WO See clause 9.6.1.3 of oneM2M TS-0001 [i.2] where this
common attribute is described.

parentID 1 RO See clause 9.6.1.3 of oneM2M TS-0001 [i.2] where this
common attribute is described.

authorizationPolicyIDs 1 (L) RW See clause 9.6.1.3 of oneM2M TS-0001 [i.2] where this
common attribute is described

creationTime 1 RO See clause 9.6.1.3 of oneM2M TS-0001 [i.2] where this
common attribute is described

expirationTime 1 RW See clause 9.6.1.3 of oneM2M TS-0001 [i.2] where this
common attribute is described

lastModifiedTime 1 RO See clause 9.6.1.3 of oneM2M TS-0001 [i.2] where this
common attribute is described

labels 0..1 (L) RW See clause 9.6.1.3 of oneM2M TS-0001 [i.2] where this
common attribute is described

7.1.1.2 Resource Type accessTokenIssuing

The <accessTokenIssuing> resource is a virtual resource because it does not have a representation. It is the child

resource of the <accessTokenAuthority> resource. When a CREATE Request addresses the <accessTokenAuthority>

resource, an access token issuance process is triggered. The access token request is included in the Content parameter of

the CREATE Request, and the access token response is included in the Content parameter of the CREATE Response.

The <accessTokenIssuing> resource inherits access control policies that apply to the parent <accessTokenAuthority>

resource.

7.1.1.3 Resource Type accessToken

The <accessToken> resource represents M2M Access Token information that is created by an access token insurance

process. The <accessToken> resource is the child resource of the <accessTokenAuthority> resource.

<accessToken>

1

1

1

issuer

holder

token

Figure 7.1.1.3-1: Structure of <accessTokenAuthority> resource

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI TTA, TTC) Page 47 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

The <accessToken> resource contains the attributes specified in table 7.1.1.3-1.

Table 7.1.1.3-1: Attributes of <accessToken> resource

Attributes of
<statsConfig>

Multiplicity
RW/
RO/
WO

Description

resourceType 1 RO See clause 9.6.1.3 of oneM2M TS-0001 [i.2] where this
common attribute is described

resourceID 1 RO See clause 9.6.1.3 of oneM2M TS-0001 [i.2] where this
common attribute is described

resourceName 1 WO See clause 9.6.1.3 of oneM2M TS-0001 [i.2] where this
common attribute is described

parentID 1 RO See clause 9.6.1.3 of oneM2M TS-0001 [i.2] where this
common attribute is described

creationTime 1 RO See clause 9.6.1.3 of oneM2M TS-0001 [i.2] where this
common attribute is described

expirationTime 1 RW See clause 9.6.1.3 of oneM2M TS-0001 [i.2] where this
common attribute is described

lastModifiedTime 1 RO See clause 9.6.1.3 of oneM2M TS-0001 [i.2] where this
common attribute is described

labels 0..1 (L) RW See clause 9.6.1.3 of oneM2M TS-0001 [i.2] where this
common attribute is described

issuer 1 RO This attribute contains the identifier of the token issuer

holder 1 RO This attribute contains the identifier of the token holder

token 1 RO This attribute contains the access token itself

7.1.2 Resource Procedures for Token Issuance

7.1.2.1 <accessTokenAuthority> Resource Procedures

7.1.2.1.1 Introduction

This clause describes the management procedures for the <accessTokenAuthority> resource and its child resources.

7.1.2.1.2 Create <accessTokenAuthority>

This procedure is used to create a <accessTokenAuthority> resource.

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI TTA, TTC) Page 48 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Table 7.1.2.1.2-1: <accessTokenAuthority> CREATE

<accessTokenAuthority> CREATE

Associated Reference
Point

Mcc and Mcc'

Information in Request
message

All parameters defined in table 8.2.2-2 of oneM2M TS-0001 [i.2] apply with the specific
details for:
To: the address of the <CSEBase> where the <accessTokenAuthority> resource is
intended to be Created.
Content: attributes of the <accessTokenAuthority> resource as defined in
clause 7.1.1.1-2

Processing at Originator
before sending Request

According to clause 10.1.1.1 of oneM2M TS-0001 [i.2]

Processing at Receiver According to clause 10.1.1.1 of oneM2M TS-0001 [i.2]with the following additions:

 Upon successful validation of the provided attributes, the Hosting CSE creates
the <accessTokenAuthority> resource including its virtual child resource
specified in table 7.1.1.1-1

 If there is a access token issuance process to be bound to the
<accessTokenIssuing> virtual resource, then bind it to the
<accessTokenIssuing> virtual resource, otherwise leave the binding void. The
access token issuance process and the binding method are out of scope

Information in Response
message

According to clause 10.1.1.1 of oneM2M TS-0001 [i.2]

Processing at Originator
after receiving
Response

According to clause 10.1.1.1 of oneM2M TS-0001 [i.2]

Exceptions According to clause 10.1.1.1 of oneM2M TS-0001 [i.2]

7.1.2.1.3 Retrieve <accessTokenAuthority>

This procedure is used to retrieve the attributes of a <accessTokenAuthority> resource.

Table 7.1.2.1.3-1: <accessTokenAuthority> RETRIEVE

<accessTokenAuthority> RETRIEVE

Associated Reference Points Mcc and Mcc'

Information in Request
message

According to clause 10.1.2 of oneM2M TS-0001 [i.2]

Processing at Originator
before sending Request

According to clause 10.1.2 of oneM2M TS-0001 [i.2]

Processing at Receiver According to clause 10.1.2 of oneM2M TS-0001 [i.2]

Information in Response
message

According to clause 10.1.2 of oneM2M TS-0001 [i.2]

Processing at Originator after
receiving Response

According to clause 10.1.2 of oneM2M TS-0001 [i.2]

Exceptions According to clause 10.1.2 of oneM2M TS-0001 [i.2]

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI TTA, TTC) Page 49 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

7.1.2.1.4 Update <accessTokenAuthority>

This procedure is used to update the attributes of a <accessTokenAuthority> resource.

Table 7.1.2.1.4-1: <accessTokenAuthority> UPDATE

<accessTokenAuthority> UPDATE

Associated Reference
Points

Mcc and Mcc'

Information in Request
message

According to clause 10.1.3 of oneM2M TS-0001 [i.2]

Processing at Originator
before sending Request

According to clause 10.1.3 of oneM2M TS-0001 [i.2]

Processing at Receiver According to clause 10.1.3 of oneM2M TS-0001 [i.2]

Information in Response
message

According to clause 10.1.3 of oneM2M TS-0001 [i.2]

Processing at Originator
after receiving
Response

According to clause 10.1.3 of oneM2M TS-0001 [i.2]

Exceptions According to clause 10.1.3 of oneM2M TS-0001 [i.2]

7.1.2.1.5 Delete <accessTokenAuthority>

This procedure is used to delete a <accessTokenAuthority> resource.

Table 7.1.2.1.5-1: <accessTokenAuthority> DELETE

<accessTokenAuthority> DELETE

Associated Reference
Points

Mcc and Mcc'

Information in Request
message

According to clause 10.1.4 of oneM2M TS-0001 [i.2]

Processing at Originator
before sending Request

According to clause 10.1.4 of oneM2M TS-0001 [i.2]

Processing at Receiver According to clause 10.1.4 of oneM2M TS-0001 [i.2]

Information in Response
message

According to clause 10.1.4 of oneM2M TS-0001 [i.2]

Processing at Originator
after receiving
Response

According to clause 10.1.4 of oneM2M TS-0001 [i.2]

Exceptions According to clause 10.1.4 of oneM2M TS-0001 [i.2]

7.1.2.2 <accessTokenIssuing> Resource Procedures

7.1.2.2.1 Introduction

This clause describes the management procedures for the <accessTokenIssuing> resource. This virtual resource is used

to trigger an access token issuance process. Only the Create operation is allowed on this virtual resource.

7.1.2.2.2 Create <accessTokenIssuing>

This procedure is used to trigger an access token issuance process that is bound to a <accessTokenIssuing> virtual

resource.

Originator: The Originator requests an access token by using CREATE operation on a <accessTokenIssuing> virtual

resource for a <accessToken>. The Originator is an AE or a CSE. The Originator provide the information about what

privileges the Originator wants to apply.

Receiver: The Receiver checks if the Originator has CREATE permission on the <accessTokenIssuing> virtual

resource. Upon successful validation, the Receiver check what privileges can be included in the access token according

to the authorization policies, and then generate an access token for the Originator. If there is no process bound to the

<accessTokenIssuing> virtual resource, then the Receiver responds with an error.

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI TTA, TTC) Page 50 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Table 7.1.2.2.2-1: <accessTokenIssuing> CREATE

<accessTokenIssuing> CREATE

Associated Reference
Points

Mcc and Mcc'

Information in Request
message

According to clause 10.1.2 of oneM2M TS-0001 [i.2] with the following additions:
From: Identifier of the AE or the CSE that initiates the Request
To: The address of the <accessTokenIssuing> virtual resource
Content: The representation of the access token request

Processing at Originator
before sending Request

The Originator requests creation of a <accessToken> resource by using the CREATE
operation. The request addresses the <accessTokenIssuing> virtual resource under a
<accessTokenAuthority> of a Hosting CSE. The Originator is an AE or a CSE. The
originator provides the information about what privileges the Originator want to apply.
The access token request is included in the Content parameter of the Request
message. The Originator can be an AE or a CSE.

Processing at Receiver The Receiver performs the following operations:

 Check if the Originator has CREATE permission under the target
<accessTokenIssuing> virtual resource

 Check the validity of the provided parameters

 Check if the <accessTokenIssuing> virtual resource is bound to an access
token process

 Check if the requested privileges are within the Access Token Issuing
Privileges

 Upon successful validation, check what privileges can be agreed and included
access token according to access token authorization policies

 Sign and/or encrypt the access token plaintext

 Create a <accessToken> resource for the generated access control token
under the <accessTokenAuthority> resource

 Create an access token response in which either the generated access token
or the resource address of the created <accessToken> resource is included
and send it to the Originator. The access token response is included in the
Content parameter of the Response message

Information in Response
message

According to clause 10.1.2 of oneM2M TS-0001 [i.2] with the following additions:
Content: The representation of the access token response

Processing at Originator
after receiving
Response

According to clause 10.1.1.1 of oneM2M TS-0001 [i.2]

Exceptions According to clause 10.1.2 of oneM2M TS-0001 [i.2] with the following:

 There is no token issuance process bound to the <accessTokenIssuing> virtual
resource

 The provided content of the access token request is not in line with the
specified structure

7.1.2.3 <accessToken> Resource Procedures

7.1.2.3.1 Introduction

This clause describes the management procedures for the <accessToken> resource. This resource is used to store the

access token generated by the access token process. Only the Retrieve operation is allowed on this resource.

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI TTA, TTC) Page 51 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

7.1.2.3.2 Retrieve <accessToken>

This procedure is used to retrieve attributes information of a <accessToken> resource. The generic retrieve procedure is

described in clause 10.1.2 of oneM2M TS-0001 [i.2].

Table 7.1.4.3.2-1: <accessToken> RETRIEVE

<accessToken>RETRIEVE

Associated Reference
Point

Mca, Mcc and Mcc'

Information in Request
message

All parameters defined in table 8.2.2-2 of oneM2M TS-0001 [i.2]apply with the specific
details for:

 Content: void

Processing at Originator
before sending Request

According to clause 10.1.2 of oneM2M TS-0001 [i.2]

Processing at Receiver According to clause 10.1.2 of oneM2M TS-0001 [i.2]

Information in Response
message

All parameters defined in table 8.2.3-1 of oneM2M TS-0001 [i.2] apply with the specific
details for:

 Content: attributes of the <subscription> resource as defined in

clause 8.2.3.3

Processing at Originator
after receiving
Response

According to clause 10.1.2 of oneM2M TS-0001 [i.2]

Exceptions According to clause 10.1.2 of oneM2M TS-0001 [i.2]

7.2 Proposal 4: oneM2M-based SLDA

7.2.1 Introduction

The following clauses propose an architecture, procedures, and resource definitions for enabling the oneM2M system to

support Service Layer Dynamic Authorization (SLDA) functionality.

A summary of the proposed oneM2M enhancements include:

1) Enhancements to the oneM2M architecture to support SLDA functionality and to show which types of

oneM2M entities SLDA functionality can be included within (e.g. MEF, MAF and CSEs).

2) The definition of several oneM2M procedures providing message sequence level descriptions of how different

types of dynamic authorization functionality can be supported within a oneM2M system.

3) The definition of a oneM2M <dynAuthPolicy> resource and attributes to support configuration of service layer

dynamic authorization policies.

4) The definition of a oneM2M <consult> resource and corresponding request and response message formats to

support the ability to perform consultation-based dynamic authorization.

5) Some proposed enhancements to the existing oneM2M defined <accessControlPolicy> resource to include an

identifier for an individual privilege within the privilege list that enables partial addressing of individual

privileges within privileges list, an expiration time for each individual privilege, and the definition of new

types of authorization context that support use cases involving payment-based, reputation-based, and security

assessment-based dynamic authorization.

7.2.2 Architecture

SLDA functionality can optionally be hosted on various oneM2M defined entities including a CSE, a MEF or a MAF.

SLDA functionality can be centralized and hosted in its entirety on one of these oneM2M defined entities, or

alternatively, the SLDA functionality can be partitioned such that its sub-functions (SLDA-PA, SLDA-PD, SLDA-PE

and SLDA-PI) can be hosted in a distributed manner across multiple oneM2M entities.

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI TTA, TTC) Page 52 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

EXAMPLE: The SLDA-PI sub-function can be hosted on a MEF, the SLDA-PD and SLDA-PA sub-functions

on a MAF and the SLDA-PE sub-function on a CSE. When hosted in a distributed manner, the

SLDA sub-functions can coordinate with one another to perform dynamic authorization functions.

CSE

SLDA

MAF

AEs / CSEs

SLDA

SLDA

MEF

SLDA - PA

SLDA - PD

SLDA - PE

SLDA - PI

SLDA Policy

Administration and

Determination

Functionality

deployed on a

MAF

 SLDA Policy

Information

Functionality

deployed on a

MEF

SLDA Policy

Enforcement

Functionality

deployed on a

CSE

Other Functions SLDA Can Consult With

(E.g. Security, Payment, Platform Validation, Reputation,

Location, etc)

Figure 7.2.2-1: SLDA deployment distributed across oneM2M MEF, MAF and CSE Entities

7.2.3 General Procedure for Dynamic Authorization Policy Provisioning
and Configuration, Policy Evaluation and Enforcement

7.2.3.1 Configuration of Dynamic Authorization Policies

Dynamic authorization policies can be configured via creating/updating/deleting the dynAuthRules attribute of a

targeted <dynAuthPolicy> resource. Once configured, an SLDA function can make use of these policies to perform

dynamic authorization request handling.

oneM2M Entity

(E.g. AE)

oneM2M Entity

Hosting a SLDA Function

(E.g. CSE, MEF, MAF)

2: CREATE/UPDATE/DELETE Request

To: URI or <dynAuthPolicy> Resource

Payload: <dynAuthPolicy> Resource

4: <dynAuthPolicy> rules are

Created/Updated/Deleted

5: CREATE/UPDATE/DELETE Response

Payload: Status

3: SLDA function verifies

requester has proper privileges

to create/update/delete

<dynAuthPolicy>

1: Determine desired dynamic

authorization rules

Figure 7.2.3.1-1

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI TTA, TTC) Page 53 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

 Step 1: A oneM2M entity (e.g. AE) determines the type of dynamic authorization rule it would like to

configure and the corresponding values for this rule (such as consultation-based rules, payment-based rules,

security-assessment-based rules and reputation-based rules).

 Step 2: A oneM2M entity (e.g. AE) sends request targeting a second oneM2M entity (e.g. CSE, MEF or

MAF) that hosts a SLDA function. The request contains a <dynAuthPolicy> resource representation, where

the dynAuthRules attribute of the <dynAuthPolicy> resource can be configured with dynamic authorization

policy rules from Step 1.

 Step 3: The SLDA function hosted on the oneM2M entity receives the request and checks whether the

requester has the proper privileges to perform the specified operation on the targeted <dynAuthPolicy>

resource. This check is performed by confirming whether the requester has configured privileges within the

corresponding <accessControlPolicy> resource associated with the targeted <dynAuthPolicy>. If yes, the

SLDA function continues with processing the request, otherwise the SLDA function returns an error to the

requester indicating lack of privileges to perform this operation to the requester.

 Step 4: The SLDA function processes the request and based on the operation either creates, updates or deletes

the specified rules to/from the dynAuthRules attribute of the targeted <dynAuthPolicy> resource.

 Step 5: The receiving oneM2M entity returns a response to the requester indicating whether or not the request

to create, update, or delete the specified rules in the dynAuthRules attribute of the targeted <dynAuthPolicy>

resource was successful or not.

7.2.2.2 Service Layer Dynamic Authorization

7.2.2.2.1 Introduction

Service Layer Dynamic Authorization can be triggered and performed autonomously by a oneM2M entity that hosts a

SLDA function. Via this procedure an SLDA function can support autonomously granting or denying privileges on-the-

fly during the processing of requests made to access resources which a requester does not have existing privileges to

access. By supporting this procedure, burden is removed from requesters since they do not explicitly request access

privileges for resources they do not have privileges established for. Via this procedure, service layer dynamic

authorization can be performed without requesters being aware that it is being performed. This reduces the overhead

on requesters especially for use cases involving resource constrained devices (e.g. sensor applications hosted on IoT

devices).

This procedure is also beneficial for the service layer itself since it offers a mechanism for access control policies to be

dynamically created or updated on-the-fly leveraging SLDA results rather than having to have an external management

entity in the network statically pre-configure access control policies with a set of privileges in advance. Pre-configuring

access control policies in advance can be burdensome, inflexible and not very scalable.

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI TTA, TTC) Page 54 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

oneM2M Entity

(E.g. AE or CSE)

oneM2M Entity

Hosting Resource &

SLDA Functionality

(E.g. CSE)

1: CREATE/RETRIEVE/UPDATE/DELETE/SUBSCRIBE/DISCOVER Request

To: URI of targeted resource

Payload: Representation of Resource (if applicable)

5: (Optional) SLDA functionality consults with other entities in system to determine whether to

grant or deny access privileges

6: CREATE/UPDATE/DELETE Response

Payload: Status: Success

2: Entity checks

<accessControlPolicy> resources

of targeted resource or parent

resource(s) and detects lack of

privileges

3: SLDA function is triggered to

perform dynamic authorization

4: SLDA functionality finds applicable <dynAuthPolicy> resource and performs dynamic

authorization

7: (Optional) SLDA function

updates <accessControlPolicy>

privileges based on SLDA results

8: CREATE/RETRIEVE/UPDATE/DELETE/SUBSCRIBE/DISCOVER Request

To: URI of targeted resource

Payload: Representation of Resource (if applicable)

10: CREATE/UPDATE/DELETE Response

Payload: Status: Success

9: Entity checks

<accessControlPolicy> resources

of targeted resource or parent

resource(s) and detects proper

privileges exist and access is

granted

Other oneM2M Entities

Hosting SLDA

Functionality

(E.g. CSE, MEF, MAF)

Other Entities

Consulted by SLDA Functionality

(E.g. Payment Function, Security

Function, Platform Validation

Function, etc)

Figure 7.2.2.2.1-1

 Step 1: A requesting oneM2M entity (e.g. AE or CSE) issues a request (i.e.

Create/Retrieve/Update/Delete/Subscribe/Discover) to another oneM2M entity.

 Step 2: The receiving oneM2M entity (e.g. CSE) detects access to targeted resource. The receiving entity

checks the corresponding <accessControlPolicy> resource(s) applicable to the targeted resource (if any) to

determine whether the requester has sufficient privileges configured to allow it to perform the desired type of

access. In this example, the requester lacks sufficient access privileges.

 Step 3: Rather than immediately returning an 'access denied' error to the requester, the receiving entity triggers

dynamic authorization processing to be performed by the SLDA functionality that can either be hosted on the

receiving entity or on another entity in the system. SLDA functionality can also be split across multiple

entities with some functionality hosted on the receiving entity.

 Step 4: The receiving entity, if enabled with SLDA functionality, begins to perform dynamic authorization

processing. Depending on whether the receiving entity hosts SLDA functionality itself will determine whether

the SLDA processing is performed completely local or whether the receiving entity will communicate with

other oneM2M entities in the system to assist it with performing SLDA. If no SLDA functionality is found the

SLDA processing is stopped and an 'access denied' error is returned to the requester. If SLDA functionality is

found to be hosted on either the receiving entity and/or other entities in the system, then this functionality is

triggered to attempt to locate <dynAuthPolicy> resources applicable to the targeted resource. If a

<dynAuthPolicy> is not found, the SLDA discontinues dynamic authorization processing and returns an

'access denied' error to the requester. If one or more <dynAuthPolicy> resources are found, the SLDA

functionality uses the dynAuthRules attribute for each resource found to evaluate against the requester's request

and determines whether privileges can be dynamically granted.

 Step 5 (Optional): While evaluating the dynAuthRules of the applicable <dynAuthPolicy> resources, the

SLDA function can consult with other entities in the system depending on the type of dynAuthRules specified.

Consultation can gather the proper information the SLDA function uses to determine whether or not to grant or

deny access privileges to the requester. This consultation is performed using the <consult> resource and its

corresponding request and response primitives.

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI TTA, TTC) Page 55 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

 Step 6: Based on the results of evaluating the request against the dynAuthRules and possibly consulting with

other entities in the system to obtain additional information that it factors into its decision making, the SLDA

functionality decides to grant access to the requester. As a result, the receiving entity performs the request on

the targeted resource and returns a successful response to the requester. The requester, is unaware that

autonomous SLDA was performed. All it is aware of is its request completed successfully.

 Step 7 (Optional): Using the dynamic authorization results, the SLDA function can optionally update the

privileges attribute within the <accessControlPolicy> resource(s) associated with the targeted resource to add

access control privileges for the requester. This decision can be controlled via a dynAuthRule defined within a

<dynAuthPolicy> resource.

EXAMPLE: The dynAuthRule can support a rule (e.g. privilege lifetime rule) to control whether or not the

SLDA function adds or updates the static privileges of the <accessControlPolicy> resources and if

so what the expiration time of this privilege is. As a result, the SLDA function can use this rule to

control whether it updates or adds a privilege and if so the expiration time (e.g. this can be done

using the accessControlExpirationTime component of the privilege). Based on these rules, the

SLDA function determines whether or not to add/update privileges and their respective lifetimes.

By choosing to update the privileges, the requester can be granted access to the resource and

perform the same operation without dynamic authorization having to be repeated.

 Step 8: A requesting oneM2M entity (e.g. AE or CSE) issues a request (i.e.

Create/Retrieve/Update/Delete/Subscribe/Discover) to the same resource on the same oneM2M entity.

 Step 9: The receiving oneM2M entity (e.g. CSE) detects access to a targeted resource. The receiving entity

checks the corresponding <accessControlPolicy> resource(s) applicable to the targeted resource and detects

that the requester now has sufficient access privileges as a result of the SLDA function having added these

privileges as part of Step 7.

 Step 10: The receiving entity performs the request on the targeted resource and returns a successful response

to the requester.

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI TTA, TTC) Page 56 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

7.2.2.2.2 Dynamic Authorization Process - Based on Subscription

The SLDA can consult with an entity in the system (e.g. CSE, MAF, MEF) to determine whether or not a requesting

entity has a proper service subscription that allows it privileges to gain access to a targeted resource.

oneM2M Entity

Hosting SLDA

Functionality

(E.g. CSE, MAF, MEF)

SLDA Function Consults with Service Layer Subscription Verification Function

 2: SLDA functionality performs dynamic authorization using a <dynAuthPolicy> having

dynAuthRule that specifies ‘Requires Service Subscription Verification’. This triggers

SLDA functionality to either perform service subscription verification processing locally or

consult with a designated Service Layer Subscription Verification Function

Service Layer Subscription

Verification

Function

(E.g. CSE, MAF, MEF, CSE)

3: Consult Service Layer Subscription Verification Function

To: URI of <consult> resource on Subscription Verification Function

Payload: Consult Request Parameters

 consultType:’Request to verify service subscription’

 consultSubject: AE-ID or CSE-ID of originator

 consultationContext: available service subscription context info

 (E.g. service layer IDs, required service provider and plan)

Payload: Consult Response Parameters

 consultStatus: Success or Failure (whether verification completed)

 consultResults: Service Layer Subscription Verification Results

4: Subscription Verificaiton Function Consultation Response

1. SLDA triggered either

explicitly or autonomously

 5: SLDA functionality checks service layer subscription

verification check met or exceeded the subscription

requirements specified by the <dynAuthPolicy>. It factors

this outcome into its dynamic authorization decision

making to determine whether or not to grant or deny

requester access privileges.

Figure 7.2.2.2.2-1

 Step 1: The SLDA function is triggered either by an explicit request (i.e. access to <dynAuthRequest>

resource) or autonomously via the SLDA function itself (e.g. via detection of a request that failed checks on

existing <accessControlPolicy> static privileges).

 Step 2: The SLDA locates applicable <dynAuthPolicy> resources (if any) and evaluates the dynAuthPolicy

attribute to determine what rules have been configured. In this example, the dynAuthPolicy attribute has been

configured with a rule specifying 'Requires Service Subscription Verification'. This rule triggers the SLDA

function to either perform local service subscription verification processing (i.e. check

<m2mServiceSubscriptionProfile> resources) or consult with a Subscription Verification Function in the

system to have it perform this verification on behalf of the SLDA.

 Step 3: The SLDA function forms a consultation request message. The message is targeted to the <consult>

resource hosted by the Subscription Verification Function. The consultSubject is configured with the AE-ID or

CSE-ID of the requester for which the verification is being performed. The payload of the request is

configured with any service subscription information of the requester that is available (e.g. service layer IDs)

as well as the service subscription policy rule defining conditions such as the applicable service provider

and/or service plan that a requester will be granted access privileges.

 Step 4: The Subscription Verification Function assesses the subscription conditions defined by the policy

against the requester's service subscription to determine whether the requester meets the conditions defined by

the policy. The Subscription Verification Function then returns the result back to the SLDA via a consult

response containing a verification status and a list of conditions that have been met as well as any that have

not.

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI TTA, TTC) Page 57 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

 Step 5: SLDA functionality checks the subscription verification results and factors this outcome into its

dynamic authorization decision making to determine whether or not to grant or deny requester access

privileges.

7.2.3 Resource Definitions

7.2.3.1 Resource Type <dynAuthPolicy>

The <dynAuthPolicy> resource serves as the interface to configure the SLDA function with dynamic authorization

rules. This resource is used to create, retrieve, update and delete SLDA policies. Once configured with one or more

<dynAuthPolicy> resources, the SLDA function uses the rules defined within the policies to perform dynamic

authorization decision making.

Various types of dynamic authorization rules can be supported such as (but not limited to) multi-factor authentication-

based, payment-based, security assessment-based, consultation-based and reputation-based policies. The representation

of the resources are described further below.

In addition to dynamic authorization rules, the <dynAuthPolicy> resource also supports a selfAccessControlPolicyIDs

attribute. This attribute is used to reference access control policies that define the access privileges for the

<dynAuthPolicy> resource itself. These privileges are used to control which entities are allowed to access (e.g. retrieve,

update or delete) the <dynAuthPolicy> resource and its attributes.

Optionally, the <dynAuthPolicy> resource can also support an accessControlPolicyIDs attribute that can be configured

with a list of links to one or more <accessControlPolicy> resources whose static privileges a SLDA function can

dynamically create, update or delete using this <dynAuthPolicy> resource.

<dynAuthPolicy>

accessControlPolicyIDs

selfAccessControlPolicyIDs

dynAuthRules

Figure 7.2.3.1-1: Structure of <dynAuthPolicy> resource

The <dynAuthPolicy> resource contains the attributes specified in table 7.2.3.1-1.

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI TTA, TTC) Page 58 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Table 7.2.3.1-1: Attributes of <dynAuthPolicy> resource

Attribute Name Multiplicity RW/RO/WO Description

selfAccessControlPolicyIDs 1(L) RO Links to authorization policy(s) defining which entities have the
privilege to perform CRUD operations to this <dynAuthPolicy>
resource.

accessControlPolicyIDs 0..1(L) RW Links to one or more access control policies whose privileges
can be dynamically created, updated or deleted by an SLDA
function based on the rules defined by this <dynAuthPolicy>
resource.

dynAuthRules 1(L) RW List of one or more rules used by a SLDA function to perform
dynamic authorization. These rules are used to determine
whether or not the SLDA function is to dynamically grant
access privileges to an entity attempting to access a resource
or service that the entity does not currently have proper
privileges to access.
Each rule can be specified as a list of criteria met by an
originator of a request before access privileges are dynamically
granted.
The following is a list of types of criteria:
(see note)

 Allowed Originators (ar): A list of IDs of originators

that are candidates for dynamic authorization. Wildcard
characters such as a '*' can be used to.

 Blocked Originators (br): A list of IDs of originators

that are NOT candidates for dynamic authorization.
Wildcard characters such as a '*' can be used to.

 Allowed Operations (aop): A list of allowed operations

that are candidates for dynamic authorization.

 Blocked Operations (bop): A list of operations that are

NOT candidates for dynamic authorization.

 Allowed Locations (al): A list of locations originator is

allowed to be in to be considered a candidate for
dynamic authorization.

 Blocked Locations (bl): A list of locations originator is

forbidden to be in to be considered a candidate for
dynamic authorization.

 Allowed Time Schedule (ats): A list of times that

requests are allowed to be considered a candidate for
dynamic authorization.

 Blocked Time Schedule (bts): A list of times that

requests are NOT allowed to be considered a candidate
for dynamic authorization.

 Allowed IP addresses (aia): A list of originator IP

addresses that are allowed to be considered candidates
for dynamic authorization.

 Blocked IP addresses (aia): A list of originator IP

addresses that are NOT allowed to be considered
candidates for dynamic authorization.

 Allowed Requester Roles (arr): A list of requester

roles that are allowed to be considered candidates for
dynamic authorization.

 Blocked Requester Roles (brr): A list of requester

roles that are NOT candidates for dynamic
authorization.

 Allowed Apps (aa): A list of classes of apps or App-IDs

that are allowed to be considered candidates for
dynamic authorization.

 Blocked Apps (ba): A list of classes of apps or App-IDs

that are NOT candidates for dynamic authorization.

 Requires Payment Verification (rpv): Originator's

payment information is first verified before it can be
considered a candidate for dynamic authorization. If a
payment consultation contact is specified in the
consultationContact list, then the SLDA function can
consult with it.

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI TTA, TTC) Page 59 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Attribute Name Multiplicity RW/RO/WO Description

 Requires Service Subscription Verification (rsv): If

present, then originator's service subscription first
verifies to be valid before it can be considered a
candidate for dynamic authorization. If a service
subscription consultation contact is specified in the
consultationContact list, then the SLDA function can
consult with it.

 Requires Security Assessment (rsa): If present,

SLDA performs security assessment-based
authorization to verify that originator meets a certain
level of security. If an authorization consultation contact
is specified in the consultationContact list, then the
SLDA function can consult with it.

 Required Platform Validation Level (rpv): A level of

validation of an originator's platform to be considered a
candidate for dynamic authorization. E.g. High (H),
Average (A), Low (L). If a contact is specified in the
consultationContact list for a platform validation
function, the SLDA function can consult with it.

 Required Pre-Requisites (rpr): A list of credentials,

subscriptions, actions or other arrangements an
originator establishes/completes to be considered a
candidate for dynamic authorization.

 Requires Consultation-based Authorization (rca): If

present, SLDA performs consultation-based
authorization. If an authorization consultation contact is
specified in the consultationContact list, then the SLDA
function can consult with it.

 Requires Payment Verification (rpv): Originator's

payment information is first verified before it can be
considered a candidate for dynamic authorization. If a
payment consultation contact is specified in the
consultationContact list, then the SLDA function can
consult with it.

For example a list of dynAuthRules can be expressed as
follows:

 ar:AE1,AE2,AE3; aop:U,R,S; boo:C,D; rsv.

NOTE: Additional types can be defined.

7.2.3.2 <consult> Resource

The <consult> resource is a virtual resource having no attributes. The URI of this resource functions as a consultation

point of contact which an SLDA function uses when performing dynamic authorization to consult with another entity in

the network. For example, when a <dynAuthPolicy> is configured with a consultation-based rule that defines a

consultationContact, the URI of a <consult> resource is used. A <consult> resource can be hosted by various oneM2M

defined entities such as CSEs, AEs, MEFs and MAFs. In addition, this resource can also be hosted by other types of

entities not yet defined by oneM2M such as a location function, reputation verification function (e.g. social media

servers), platform validation and assessment function, payment function, security function and service subscription

verification function.

<consult>

Figure 7.2.3.2-1: <consult> Virtual Resource

To perform consultation, an SLDA function constructs a consult request message and targets this message towards a

<consult> resource hosted by an entity within the system. Upon receiving this request, the entity processes it according

to the type of consult, constructs a corresponding response message with the consult results, and returns the response to

the SLDA function.

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI TTA, TTC) Page 60 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Table 7.2.3.2-1: Parameters of Consult Request Message

Parameter Name Description

consultantAddr This is the address which this request is targeted at. For example, the URI of
the <consult> resource.

consulterID A oneM2M service layer ID of the originator issuing this consult request
(E.g. AE-ID, CSE-ID, App-ID, etc). For example, the CSE-ID hosting an SLDA
function.

consultType The type of consult request. Several different types of consultation can be
supported including one or more of the following types.

 Request for Consultation-based Dynamic Authorization

 Request for a Dynamic Authorization Credential

 Request for the location of an specified entity

 Request to verify payment info/token of a specified entity

 Request to verify reputation of a specified entity

 Request to verify service layer subscription of a specified entity

 Request to validate platform entity is hosted on

 Request to assess security of a specified entity

consultationInfo Each type of consult request has corresponding information associated with it.
This information can be sourced from an explicit dynamic authorization request
or from an SLDA that is performing autonomous dynamic authorization.

Some types of information include the following:

 consultSubject - Identifier of an entity which is the subject being
consulted on behalf of. For example, a oneM2M AE-ID for which an
SLDA function is consulting on behalf of and issuing a location consult
request to a location server to determine the AE's location. In this
example, the AE-ID would be the consultSubject.

 Security context/assessment information of the consultSubject which
the SLDA can collect and track

 Type of request

 Requested privileges

 Payment Info

 Service Subscription Info

 Security context information

 Security assessment conditions

Table 7.2.3.2-2: Parameters of Consult Response Message

Parameter Name Description

consultStatus The status of the consult request:

 Consultation Rejected

 Consultation Successful

 Consultation Error

consultResults Each type of consult response can have corresponding results associated with
it. Some of the results are generic and applicable to all the different types of
consult requests, while some results are specific to a particular type as
described below:

 List of privileges granted to requested resource or service and
corresponding lifetime of privileges

 List of denied privileges to requested resource or service that were not
granted and reasons why

 List of privileges that were pro-actively granted to resources or
services that were not requested but the requester might be interested
in.

 A dynamic authorization credential

 A location of the requester

 A payment verification status

 Reputation reviews/ranking

 Platform validation assessment results

 Security assessment level (e.g. trusted, un-trusted, etc.)

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI TTA, TTC) Page 61 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

7.2.3.3 Enhancements to <accessControlPolicy>

Current oneM2M specifications only support an <accessControlPolicy> resource having a set of defined privileges

based on an ACL. This ACL is a set of access-control-rule tuples that can be stored within the privileges attribute,

where each tuple is comprised of three components consisting of:

1) accessControlOriginators;

2) accessControlOperations; and

3) accessControlContext.

Three enhancements to the existing privileges attribute of the <accessControlPolicy> resource are described below:

1) An additional component has been added to privileges access-control-rule tuple called an

accessControlPrivilegeID. This component can identify and address an individual privileges access-control-

rule tuple. This identifier is useful when supporting updating or deleting of an individual tuple. Otherwise, an

update or delete of an individual tuple results in updating the entire privileges access-control-rule tuple list

which is less efficient.

2) Another component has been added to the privileges access-control-rule tuple called an

accessControlExpirationTime. This component can define a lifetime associated with a particular access-

control-rule tuple. In addition, it enables access-control-rule tuples to have different lifetimes with respect to

one another, which can provide more flexibility from a privileges perspective.

3) Three additional types of accessControlContext have also been defined:

- accessControlPaymentTerms - List of payment terms to be established before an entity is allowed to

access resources associated with this authorization policy.

- accessControlReputationLevel – Expected reputation level of an entity before it is allowed to access

resources associated with this authorization policy

- accessControlSecurityAssessment - Expected level of security of an entity before it is allowed to access

resources associated with this authorization policy

7.3 Proposal 5: A Solution of Token Based Access Control

7.3.1 Token Structure

The structure of token is shown in figure 7.3.1-1, it contains the following data fields:

 version: version of the token format.

 tokenID: unique ID of the token.

 holder: ID of the token holder.

 issuer: ID of the token issuer.

 startTime: token valid from this time.

 expiryTime: token expired after this time.

 tokenType: it specifies what kind of privilege is specified in privileges field, e.g. a role or an Access Control

List (ACL)..

 tokenName: human readable name of the token.

 appCategories: List of M2M application identities that specify in which applications this token can be used for

access control.

 privileges: privilege description, e.g. roles or ACLs.

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI TTA, TTC) Page 62 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

 extensions: information defined and used by a specific application.

Access Token

Access Token Security Mechanism

startTime

expiryTime

tokenType

tokenName

appCategories

issuer

holder

tokenID

privileges

extensions

version

Figure 7.3.1-1: Structure of access token

7.3.2 Resource Type token

The <token> resource represents an access token assigned an AE or CSE. It is the child resource of an <AE> resource or

a <remoteCSE> or directly under the <CSEBase> resource of the IN-CSE. One can get the information about what

tokens are assigned to an AE or a CSE through retrieving <token> resources under its <AE> resource or <remoteCSE>

resource or the <CSEBase> resource of the IN-CSE.

An <AE> resource or a <remoteCES> or the <CSEBase> resource of the IN-CSE can have zero or multiple <token>

child resources.

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI TTA, TTC) Page 63 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

issuer
1

<token>

tokenID
1

<subscription>
0..n

tokenType
0..1

appCategories
0..1(L)

startTime
1

expiryTime
1

tokenName
0..1

tokenValue
1

Figure 7.3.2-1: Structure of <token> resource

The <token> resource contains the child resources specified in table 7.3.2-1.

Table 7.3.2-1: Child resources of <token> resource

Child Resources
of <token>

Child Resource Type Multiplicity Description
<token> Child

Resource Types

[variable] <subscription> 0..n See clause 9.6.8 of oneM2M
TS-0001 [i.2] where the type
of this resource is described.

[variable]

The <token> resource contains the attributes specified in table 7.3.2-2.

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI TTA, TTC) Page 64 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Table 7.3.2-2: Attributes of <token> resource

Attributes of <token> Multiplicity
RW/
RO/
WO

Description

resourceType 1 RO See clause 9.6.1.3 of oneM2M TS-0001 [i.2] where this
common attribute is described.

resourceID 1 RO See clause 9.6.1.3 of oneM2M TS-0001 [i.2] where this
common attribute is described.

resourceName 1 WO See clause 9.6.1.3 of oneM2M TS-0001 [i.2] where this
common attribute is described.

parentID 1 RO See clause 9.6.1.3 of oneM2M TS-0001 [i.2] where this
common attribute is described.

expirationTime 1 RW See clause 9.6.1.3 of oneM2M TS-0001 [i.2] where this
common attribute is described.

accessControlPolicyIDs 0..1 (L) RW See clause 9.6.1.3 of oneM2M TS-0001 [i.2] where this
common attribute is described. If no accessControlPolicyIDs is
given at the time of creation, the accessControlPolicyIDs of the

parent resource is linked to this attribute.

creationTime 1 RO See clause 9.6.1.3 where this common attribute is described.

labels 0..1 (L) RW See clause 9.6.1.3 where this common attribute is described

lastModifiedTime 1 RO See clause 9.6.1.3 where this common attribute is described.

tokenID 1 RW The identifier of the token.

issuer 1 RW The identifier of the token issuer.

startTime 1 RW Start time/date of the token can be used for access control.
This attribute is mandatory for all token resources.

expiryTime 1 RW End time/date of the token can be used for access control.
This attribute is mandatory for all token resources.

tokenType 1 RW Specify what kind of privileges is specified in the privileges field
of token, e.g. roles or ACLs.

tokenName 0..1 RW Human readable name of the token.

appCategories 0..1 (L) RW Specifies the M2M applications which can use this token for
access control. The holder of the token can use this
information to select applicable tokens for a resource access.

tokenValue 0..1 RW Used to store access token itself. The token ID in the access
token is expected to be equal to the value in the tokenD
attribute.

7.3.3 Procedure of Token Based Access Control

The general procedure of issuing a token to an Originator and the originator uses the token to access resource is shown

in the figure 7.3.3-1 and described as follows:

Pre-configuration for the token issuance and verification:

 The Originator registers to the Registrar CSE.

 The Token Authority provides the security credentials used for verifying tokens to PDPs.

Procedure of token issuance and use

1) The Originator sends token application request to the Token Authority. This step is not performed in some

cases.

2) The Token Authority checks if the applied privilege can be assigned to the Originator. The Token Authority

can contact an External Authorization Function for checking this request. In case Token Authority can check

the privilege authorization locally, skip this step and the next step.

3) The External Authorization Function checks the privilege authorization request and returns the check result.

4) After passing the privilege authorization check the Token Authority issues a token that contains the applied

privilege for the Originator.

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI TTA, TTC) Page 65 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

5) The Token Authority sends a <token> resource creation request to the Originator's <AE>/<remoteCSE>

resource which is in the Registrar CSE. The token issued to the AE/CSE and information pertain to the token

are included in the request.

6) The Registrar CSE checks the access control policies to determine if the Token Authority has the privileges of

creating <token> resource in the target <AE>/<remoteCSE> resource. If it is permitted, the Registrar CSE

creates the <token> resource.

7) The Registrar CSE returns the result of <token> resource creation back to the Token Authority.

8) The Token Authority returns the result of token issuance back to the Originator. The response can contain the

issued token and information pertaining to this token.

9) The Originator sends <token> resources retrieve request to its <AE>/<remoteCSE> resource in the Registrar

CSE in order to get the tokens that are issued to it.

10) The Registrar CSE returns retrieved <token> resources back to the Originator.

11) The Originator selects applicable tokens according to the appCategoryIDs attribute of <token> resources, and

includes them into the request sent to the Hosting CSE. The included token information contains at least the

token IDs or tokens themselves.

12) The PEP in the Hosting CSE generates access decision request according to the request of the Originator, and

sends the request to a PDP. The token information received from the Originator is included in the request.

13) In case only token IDs are included in the access decision request, the PDP sends a token attribute request to a

PIP in order to get the token information using the token IDs, and the PIP further sends a <token> resource

retrieve request to the Registrar CSE of the Originator. The PDP can directly send a <token> resource retrieve

request to the Registrar CSE of the Originator instead of via a PIP. In case tokens are included in the access

decision request, skip this step and the next step.

14) The Registrar CSE retrieves the <token> resource in the target <AE>/<remoteCSE> resource according to the

token IDs, and returns the <token> resource back to the PIP or directly back to the PDP.

15) The PDP verifies the received tokens, the verification includes: a token is issued by a valid Token Authority

and is still valid. If a token passes the verification, the PDP extracts the privileges from the token.

16) The PDP evaluates the resource access request of the Originator using access control policies and privileges

assigned to the Originator for making an access control decision.

17) The PDP returns the access control decision back to the PEP.

18) The Hosting CSE enforces the access control decision, i.e. either performs the resource access on behalf the

Originator or denies the resource access.

19) The Hosting CSE returns the result of resource access back to the Originator.

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI TTA, TTC) Page 66 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Hosting CSE PIPPDP Registrar CSE Token AuthorityOriginator

1: Apply for token request

7: CREATE <token> resource response

6: Creating <token> resource under the

Originator's <AE>/<remoteCSE> resource

9: RETRIEVE <token> resources request

10: RETRIEVE <token> resources response

11: Access resource request（token ID or token）

12: Access decision request (token ID or token）

15: Verifying token

17: Access decision response

19: Access resource response

4: Issuing token

Extrnal

Authorization

Function

2: Confirm privilege request

3: Confirm privilege response

5: CREATE <token> resource request (token)

8: Apply for token reponse

16: Making access control decision

18: Performing access decision

0.2: Provision security credentials for verifying tokens

0.1: Originator register to the Registrar CSE

tokenID

condition:

13.1: Attribute request (token ID)

14.1: RETRIEVE <token> resource response

13.2: RETRIEVE <token> resource request (token ID)

14.2: Attribute response

Figure 7.3.3-1: Token based access control procedure

8 Release 2 Dynamic Authorization

8.1 Overview of Release 2 Dynamic Authorization Features

The analysis in the preceding clauses was used to guide the specification of Release 2 features for Dynamic

Authorization.

NOTE: This description of the Release 2 Dynamic Authorization features is largely copied from clause 11.5.1,

oneM2M TS-0001 [i.2].

The Dynamic Authorization reference model for Release 2 is shown in figure 8.1-1.

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI TTA, TTC) Page 67 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Originator

(AE/CSE)

Hosting CSE

Dynamic

Authorization

Server

(DAS)

Details not specified in oneM2M

AE

Figure 8.1-1: Dynamic Authorization reference model

This reference model added a new entity: a Dynamic Authorization Server (DAS). The DAS is a server configured with

policies for dynamic authorization, and provided with credentials for issuing Tokens.

This reference model is simpler than most of the reference models proposed in clause 6. The oneM2M Security

Working group decided to start with a reference model with a flexible DAS which does not specify the protocols for

interaction with the Originator and does not specify the procedures by which the DAS decides whether or not to

provide an Originator with authorization. The DAS can include an AE for specified interaction with the oneM2M

system.

The following procedures are specified:

 Direct Dynamic Authorization, summarized in figure 8.1-2: In this procedure, Hosting CSE interacts with

the DAS to obtain Dynamic Authorization. This procedure is based on the proposal Dynamic Authorization

Architecture Proposal 4 (DAA4) in clause 6.5 and Service Layer Dynamic Authorization (SLDA) in clause

7.2.

Originator

(AE/CSE)

Hosting CSE

1: Original

request

2: Request to DAS:

original request parameters, (opt) Role-IDs

4: Make access control decision

Dynamic

Authorization Server

(DAS)

AE

3: Response from DAS:

(opt) dynamicACPInfo, (opt) Token(s)

5: Response

Figure 8.1-2: Direct Dynamic Authorization

 Indirect Dynamic Authorization, summarized in figure 8.1-3: Indirect Dynamic Authorization provides a

mechanism to trigger the Originator to request one or more Tokens from one or more DAS. This mechanism

can provide an advantage over Direct Dynamic Authorization in cases where the DAS performs some

additional authentication and authorization of the Originator.

EXAMPLE: The DAS policies can initiate authentication of the current user of the Originator, and/or

explicit authorization by the current user.

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI TTA, TTC) Page 68 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

o Steps 1-2: The Hosting CSE can provide the Originator with Token Request Information in the

unsuccessful response.

o Steps 3: The Originator interacts with the DAS with the intention that the DAS issue Tokens

authorizing the Originator, and the Originator is provided with the Token or a Token-ID. The

interaction is not described in the present specification.

o Steps 4-7: The Originator provides the Hosting CSE with a Token, Token-ID to indicate that the

Token is to be considered in the access decision. In the case of a Token-ID, the Hosting CSE retrieves

the corresponding Token via an AE of the DAS. These are then used in the access decision. The

Hosting CSE can provide the Originator with a more compact Local-Token-ID which can be used to

identify the Token to the Hosting CSE.

Originator

(AE/CSE)

Hosting CSE

4: Repeat

request, adding

Token(s) or

Token-ID(s)

(If Token-ID provided)

5: Request Token using Token-ID

6: Make access control decision

Dynamic

Authorization

Server

(DAS)

3: Obtain Token(s) or Token-ID(s)

(details not specified in oneM2M)

AE

2: Access

denied,

Token

Request

Info

1: Original

Request,

Step 1 and 2 are optional

7: Response

(opt) Hosting

CSE-assigned

Local-Token-IDs

Figure 8.1-3: Indirect Dynamic Authorization

Release 2 also included a Role-Based Access Control (RBAC) architecture in clause 7.4 of oneM2M TS-0003 [i.3].

This RBAC architecture includes the ability to issue Tokens associated with a Role assigned to the Originator, although

the token issuing is less dynamic than the indirect Dynamic Authorization described above. The RBAC architecture also

supports storing Tokens, in a discoverable form, on CSEs acting as Token Repositories, borrowing ideas from DAA5 in

clause 6.6 and Proposal 1 in clause 7.1. The Release 2 RBAC architecture is not discussed further in this document.

8.2 Overview of Direct Dynamic Authorization

Direct Dynamic Authorization is based on proposal Dynamic Authorization Architecture Proposal 4 (DAA4) in clause

6.5. Direct Dynamic Authorization in Release 2 does not support use of a Token Repository (see final paragraph of

clause 8.1), which was based on the use of the Registrar CSE in DAA5 in clause 6.6. Support for Token Repositories

can be added in later releases.

The <dynamicAuthorizationConsultation> resource is defined in oneM2M TS-0001 [i.2] to describe how a Hosting

CSE can submit requests to a DAS. If a resource includes a link to this resource, then access to that resource is allowed

to be authorized by submitting requests to the DAS.

An interface is specified for a Direct Dynamic Authorization interactions between a Hosting CSE and a DAS. The

parameters exchanged, and the corresponding processing, are specified in clause 7.3.2.2, oneM2M TS-0003 [i.3]. The

transportation of parameters when oneM2M primitives are used is specified in clause 11.5.2, oneM2M TS-0001 [i.2].

The Hosting CSE to send, to the DAS, a DAS Request including:

 Parameters of the request from the Originator,

 A list of roles which might, if assigned to the Originator, permit the request based on existing ACPs.

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI TTA, TTC) Page 69 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

The DAS has multiple options for authorizing access:

 The DAS can update the applicable access control rules using existing mechanisms for managing access control

rules, if permitted by the Hosting CSE. This can include updating existing <accessControlPolicy> resources,

creating new <accessControlPolicy> resources, and updating the accessControlPolicyIDs attribute of the

requested resource.

 The DAS returns a DAS Response which can include:

o A dynamic <accessControlPolicy> resource to be linked to the requested resource,

o Permission to access the specific request,

o Assignment of one or more Roles to the Originator,

o Tokens identified in the Originator's request, and

o Additional Tokens issued at the discretion of the DAS.

The DAS Request is sent in the securityInfo element in the notification data of a NOTIFY Request. The DAS Response

is sent in the securityInfo element in the notification data of the corresponding NOTIFY Response.

8.3 Overview of Indirect Dynamic Authorization

Indirect Dynamic Authorization borrows ideas from the Dynamic Authorization Architecture Proposals DAA1, DAA2,

DAA3 and DAA5 in clauses 6.2, 6.3, 6.4 and 6.6. The reference model is simpler than those proposals, primarily due to

the decision to not specify the interface between Originator and DAS. This resulted in removing the separation of Grant

Issuer and Grant Approver in DAA1, removing the Security Function and Token Authorization Function in DAA2,

removing the Requesting Authority in DAA3 and removing the External Authorization Function in DAA5. Indirect

Dynamic Authorization in Release 2 does not support use of a Token Repository (see final paragraph of clause 8.1),

which was based on the use of the Registrar CSE in DAA5 in clause 6.6. Support for Token Repositories can be added

in later releases.

The parameters exchanged, and the corresponding processing, are specified in clause 7.3.2.3 of oneM2M TS-0003 [i.3].

The transportation of parameters when oneM2M primitives are used is specified in clause 11.5.3 of oneM2M TS-0001

[i.2].

NOTE: This description of the Release 2 Indirect Dynamic Authorization features is largely copied from clause

11.5.3 of oneM2M TS-0001 [i.2].

The following description expands on the description of figure 8.1-3.

1. (Optional) The Originator sends a request to the Hosting CSE. This request can include Tokens, Token IDs or Local

Token IDs, but this message flow assumes that these do not provide sufficient permissions for accessing the

requested resource.

2. (Optional) Initial Hosting CSE processing:

2.1. The Hosting CSE performs the access decision. If access is allowed, then Indirect Dynamic Authorization is

not performed. If access is denied, then Indirect Dynamic Authorization can be performed.

2.2. The Hosting CSE forms a Token Request Information primitive parameter containing DAS Requests for one

or more DAS, which the Originator can forward to the corresponding DASs to request indirect dynamic

authorization. The DAS Requests are formed in the same manner as for Direct Dynamic Authorization. Each

DAS Requests can be encrypted and/or signed by the Hosting CSE using End-to-End Security of Data

(ESData), for decryption and/or verification by the DAS.

2.3. The Hosting CSE's response includes the Response Status Code "ORIGINATOR_HAS_NO_PRIVILEGE"

and Token Request Information.

3. The Originator selects a DAS identified in Token Request Information primitive parameter. The Originator

interacts with the DAS to request the issuance of one or more Tokens. The Originator can provide information for

the DAS provided in the Token Request Information, and parameters from the original resource access request.

The DAS issues a Token(s) and provides the Token-ID(s) and optionally the ESData-protected Token(s) to the

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI TTA, TTC) Page 70 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Originator. The DAS can also provide the Originator with other parameters from the Token; for example, the time

window in which the Token is valid. This interaction is specific to the Dynamic Authorization System technology

being used.

The DAS can also update the applicable access control rules using existing mechanisms for managing access

control rules, as discussed in clause 8.2.

4. The Originator repeats the original resource access request, adding ESData-protected Token(s) provided by the

DAS, and/or Token-ID(s) if the ESData-protected Token(s) was not provided by the DAS.

5. (Optional) If the request includes Token-ID(s), then for each Token-ID the Hosting CSE identifies the

corresponding DAS from which to request the corresponding ESData-protected Token. The Hosting CSE requests

the ESData-protected Token(s) from the DAS using the procedure defined for Direct Dynamic Authorization

defined in clause 8.2.

6. Hosting CSE Processing:

6.1. The Hosting CSE processes ESData-protected Token(s) to extract the authenticated Token(s). Additional

checking is also applied. The Hosting CSE can cache the Token(s).

6.2. The Hosting CSE can assign Local-Token-ID(s) to cached Token(s). This is an optimization allowing the

Originator to provide this short Local-Token-ID rather than the globally-unique Token-ID or full Token.

6.3. The Hosting CSE performs the access decision, including the authorizations provided in the authenticated

Token(s), and performs the requested operation if allowed.

7. Response:

7.1. For each new Local-Token-ID(s) that has been assigned, the Local-Token-ID and corresponding Token-ID

are included in the Assigned Token Identifiers parameter of the response.

7.2. In subsequent requests, the Originator can use the Token-ID or Token or Local-Token-ID (if provided).

8.4 Overview of Tokens

The Token structure is specified in clause 7.3.2.4, oneM2M TS-0003 [i.3]. The data fields, shown in table 8.4-1, are

based on the proposal in clause 7.3.1.

Table 8.4-1: Data fields of a Token

Element Multiplicity Description

version 1 See Clause 8.4.1

tokenID 1 See Clause 8.4.1. This ID is globally unique
within the lifetime of the Token

holder 1 See Clause 8.4.1

issuer 1 See Clause 8.4.1

notBefore 1 See startTime in Clause 8.4.1

notAfter 1 See expiryTime in Clause 8.4.1

tokenName 0..1 See Clause 8.4.1

audience 0..1 Defined by [i.10]. Identifies the Hosting CSE that

the Token intended for

permissions 0..1 (L) Describes the roles assigned by the Token,
access control rules

extension 0..1

The audience element is added to the proposal in clause 8.4.1, intended to limit the scope of Hosting CSEs with which

the Token can be used.

The appCategories and privileges in clause 8.4.1 become child elements of the permissions element, with structure

described in the table 8.4-2.

Table 8.4-2: Structure of the token permission

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI TTA, TTC) Page 71 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Element Multiplicity Description

resourceIDs 0..1 The resources to which this permission applies.
If the privileges element is present, then this
element is present.

privileges 0..1 A set of access control rules applicable to the
identified resources (for the identified holder)

roleIDs 0..1 A set of role IDs applicable to the identified
resources (for the identified holder)

The resourceIDs element is an addition to the proposal in clause 8.4.1, intended to limit the scope of resources where

the Token can be used to obtain access. The privileges element was already in clause 8.4.1, while roleIDs is considered

a more appropriate replacement for the appCategories in clause 8.4.1

The protocol-level structure of a Token is specified by the m2m:tokenClaimSet complex data type in oneM2M TS-0004

[i.9].

Clause 7.3.2.6 in oneM2M TS-0003, Release 2 [i.3] specifies a profile of JSON Web Tokens (JWT) in IETF RFC 7519

[i.10] for representing Tokens used in oneM2M. A JWT can be signed and/or encrypted by the DAS, for verification

and/or decryption by the Hosting CSE. The payload comprises a set of JWT claims, with IETF RFC 7519 [i.10]

standardizing an initial set of JWT claim names. IANA maintains a registry of JWT claim names [i.11]. Table

7.3.2.6.2-1, oneM2M TS-0003 [i.3] provides the mapping from the Token data fields in table 8.4-1 to the JWT claim

names in a oneM2M-compliant JWT.

The RBAC architecture in clause 7.4 of oneM2M TS-0003 [i.3] defines a Token Repository which can store oneM2M

Tokens in <token> resources, with the JWT claims copied to <token> resource attributes. Tokens stored in <token>

resources can be discovered using the Filter Criteria request parameter.

Token evaluation is specified in clause 7.3.2.5, oneM2M TS-0003 [i.3].

9 Conclusion

The present document offers an overview of the use cases, requirements, architecture proposals and available solutions

for Dynamic Authorization.

Some of the contents have been standardized as Release 2 Technical Specification, as described in clause 8. Others can

be used to facilitate future normative work resulting in oneM2M Technical Specifications.

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI TTA, TTC) Page 72 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

History

This clause shall be the last one in the document and list the main phases (all additional information will be removed at
the publication stage).

Publication history

V.2.0.0 07 December 2016 Approved for publication at TP#26

