
 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TTA, TTC) Page 1 of 42
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

 1

 2

 3

4

5

6

7

8

9

This Specification is provided for future development work within oneM2M only. The Partners accept no 10

liability for any use of this Specification. 11

The present document has not been subject to any approval process by the oneM2M Partners Type 1. 12

Published oneM2M specifications and reports for implementation should be obtained via the oneM2M 13

Partners’ Publications Offices. 14

 15

 16

17

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TTA, TTC) Page 2 of 42
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

About oneM2M 18

The purpose and goal of oneM2M is to develop technical specifications which address the 19

need for a common M2M Service Layer that can be readily embedded within various 20

hardware and software, and relied upon to connect the myriad of devices in the field with 21

M2M application servers worldwide. 22

More information about oneM2M may be found at: http//www.oneM2M.org 23

Copyright Notification 24

No part of this document may be reproduced, in an electronic retrieval system or otherwise, 25

except as authorized by written permission. 26

The copyright and the foregoing restriction extend to reproduction in all media. 27

© 2015, oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TTA, TTC). 28

All rights reserved. 29

Notice of Disclaimer & Limitation of Liability 30

The information provided in this document is directed solely to professionals who have the 31

appropriate degree of experience to understand and interpret its contents in accordance with 32

generally accepted engineering or other professional standards and applicable regulations. 33

No recommendation as to products or vendors is made or should be implied. 34

NO REPRESENTATION OR WARRANTY IS MADE THAT THE INFORMATION IS 35

TECHNICALLY ACCURATE OR SUFFICIENT OR CONFORMS TO ANY STATUTE, 36

GOVERNMENTAL RULE OR REGULATION, AND FURTHER, NO 37

REPRESENTATION OR WARRANTY IS MADE OF MERCHANTABILITY OR 38

FITNESS FOR ANY PARTICULAR PURPOSE OR AGAINST INFRINGEMENT OF 39

INTELLECTUAL PROPERTY RIGHTS. NO oneM2M PARTNER TYPE 1 SHALL BE 40

LIABLE, BEYOND THE AMOUNT OF ANY SUM RECEIVED IN PAYMENT BY 41

THAT PARTNER FOR THIS DOCUMENT, WITH RESPECT TO ANY CLAIM, AND IN 42

NO EVENT SHALL oneM2M BE LIABLE FOR LOST PROFITS OR OTHER 43

INCIDENTAL OR CONSEQUENTIAL DAMAGES. oneM2M EXPRESSLY ADVISES 44

ANY AND ALL USE OF OR RELIANCE UPON THIS INFORMATION PROVIDED IN 45

THIS DOCUMENT IS AT THE RISK OF THE USER. 46

47

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TTA, TTC) Page 3 of 42
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Contents 48

Contents ... 3 49

1. Scope .. 5 50

2 References .. 5 51

2.1 Normative references ... 5 52

2.2 Informative references ... 5 53

3 Definitions, symbols, abbreviations and acronyms .. 5 54

3.1 Definitions ... 5 55

3.2 Abbreviations ... 5 56

3.4 Acronyms .. 6 57

4 Conventions ... 6 58

5 Mapping of basic data types ... 6 59

6 Mapping of identifiers .. 6 60

6.1 Mapping of Device identifiers to the Node Resource .. 7 61

6.2 Identifier of an object instance ... 7 62

7 Mapping of resources ... 7 63

7.1 General mapping assumptions .. 8 64

7.1.1 Mapping of Device identifiers... 8 65

7.1.2 Mapping of Embedded Devices .. 8 66

7.2 Resource [deviceInfo] .. 8 67

7.3 Resource [memory] .. 9 68

7.4 Resource [battery] .. 9 69

7.5 Resource [areaNwkInfo] .. 10 70

7.6 Resource [areaNwkDeviceInfo] ... 10 71

7.7 Resource [eventLog] .. 11 72

7.8 Resource [deviceCapability] .. 11 73

7.9 Resource [firmware] .. 12 74

7.10 Resource [software] ... 13 75

7.11 Resource [reboot] ... 15 76

7.12 Resource [cmdhPolicy] .. 15 77

7.12.1 Resource [activeCmdhPolicy] ... 16 78

7.12.2 Resource [cmdhDefaults] .. 16 79

7.12.3 Resource [cmdhDefEcValues] .. 17 80

7.12.4 Resource [cmdhEcDefParamValues] .. 17 81

7.12.5 Resource [cmdhLimits]... 18 82

7.12.6 Resource [cmdhNetworkAccessRules].. 18 83

7.12.7 Resource [cmdhNwAccessRule] ... 19 84

7.12.8 Resource [cmdhBuffer] ... 19 85

7.13 Resource Type <mgmtCmd> ... 20 86

7.14 Resource Type <execInstance> .. 20 87

8 Mapping of procedures for management .. 21 88

8.1 Resource Type <mgmtObj> primitive mappings .. 21 89

8.1.1 Alias-Based Addressing Mechanism .. 21 90

8.1.2 Create primitive mapping ... 21 91

8.1.2.1 M2M Service Layer Resource Instance Identifier mapping .. 21 92

8.1.3 Delete primitive mapping ... 22 93

8.1.3.1 Delete primitive mapping for deletion of Object Instances ... 22 94

8.1.3.2 Delete primitive mapping for software un-install operation ... 22 95

8.1.4 Update primitive mapping .. 24 96

8.1.4.1 Update primitive mapping for Parameter modifications ... 24 97

8.1.4.2 Update primitive mapping for upload file transfer operations .. 24 98

8.1.4.3 Update primitive mapping for download file transfer operations.. 26 99

8.1.4.4 Update primitive mapping for reboot operation ... 27 100

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TTA, TTC) Page 4 of 42
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

8.1.4.5 Update primitive mapping for factory reset operation .. 28 101

8.1.4.6 Update primitive mapping for software install operation ... 28 102

8.1.5 Retrieve primitive mapping .. 30 103

8.1.6 Notify primitive mapping ... 30 104

8.1.6.1 Procedure for subscribed Resource attributes. .. 30 105

8.1.6.2 Notification primitive mapping ... 31 106

8.2 <mgmtCmd> and <execInstance> resource primitive mappings ... 32 107

8.2.1 Update (Execute) primitive for the <mgmtCmd> resource .. 32 108

8.2.1.1 Execute File Download ... 32 109

8.2.1.2 Execute File Upload Operations .. 33 110

8.2.1.3 Report Results using TransferComplete RPC .. 34 111

8.2.1.4 Execute Software Operations with ChangeDUState RPC .. 35 112

8.2.1.5 Report Results with ChangeDUStateComplete RPC .. 35 113

8.2.1.6 Execute Reboot operation .. 37 114

8.2.1.7 Execute Factory Reset operation ... 37 115

8.2.2 Delete <mgmtCmd> resource primitive mapping .. 38 116

8.2.3 Update (Cancel) <execInstance> primitive mapping ... 38 117

8.2.4 Delete <execInstance> primitive mapping .. 39 118

9 Server Interactions ... 40 119

9.1 Communication Session Establishment .. 40 120

9.1.1 IN-CSE to ACS Communication Session Establishment .. 40 121

9.1.2 ACS to IN-CSE Communication Session Establishment .. 40 122

9.2.3 ACS and IN-CSE Communication Session Requirements ... 40 123

9.2 Processing of Requests and Responses ... 41 124

9.2.1 Request and Notification Formatting .. 41 125

9.2.2 ACS Request Processing Requirements .. 41 126

9.2.3 ACS Notification Processing Requirements .. 41 127

9.3 Discovery and Synchronization of Resources ... 41 128

9.4 Access Management .. 41 129

9.4.1 Access Management Requirements .. 42 130

10 New Management Technology Specific Resources.. 42 131

History.. 42 132

 133

134

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TTA, TTC) Page 5 of 42
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

1. Scope 135

The present document describes the protocol mappings between the management Resources for oneM2M and the BBF 136

TR-181i2 Data Model [6]. 137

2 References 138

2.1 Normative references 139

The following referenced documents are necessary, partially or totally, for the application of the present document. 140

Their use in the context of this TS is specified by the normative statements that are referring back to this clause. 141

[1] oneM2M TS-0001: “Functional Architecture”. 142

[2] oneM2M TS-0004: “Service Layer Core Protocol Specification”. 143

[3] oneM2M TS-0011: “Definitions and Acronyms”. 144

[4] BBF: “TR-069 CPE WAN Management Protocol” Issue: 1 Amendment 5, November 2013. 145

[5] BBF: “TR-106 Data Model Template for TR-069-Enabled Devices”, Issue 1, Amendment 7, 146

September 2013. 147

[6] BBF: “TR-181 Device Data Model for TR-069, Issue 2 Amendment 8”, September 2014. 148

[7] BBF: “TR-131 ACS Northbound Interface Requirements, Issue:1”, November 2009. 149

2.2 Informative references 150

[i.1] oneM2M Drafting Rules 151

(http://member.onem2m.org/Static_pages/Others/Rules_Pages/oneM2M-Drafting-Rules-152

V1_0.doc) 153

3 Definitions, symbols, abbreviations and acronyms 154

3.1 Definitions 155

For the purposes of the present document, the terms and definitions given in TS-0011 [3] apply. 156

CPE Proxier A CPE that is capable of proxying the communication between an ACS and a Proxied Device as 157

defined in TR-069 [4]. 158

3.2 Abbreviations 159

For the purposes of the present document, the abbreviations given in TS-0011 [3] apply. 160

ACS Auto-Configuration Server 161

ADN Application Dedicated Node 162

AE Application Entity 163

ASN Application Service Node 164

CMDH Communication Management and Delivery Handling 165

CPE Customer Premise Equipment 166

CSE Common Services Entity 167

CWMP CPE WAN Management Protocol 168

DU Deployment Unit 169

http://member.onem2m.org/Static_pages/Others/Rules_Pages/oneM2M-Drafting-Rules-V1_0.doc
http://member.onem2m.org/Static_pages/Others/Rules_Pages/oneM2M-Drafting-Rules-V1_0.doc

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TTA, TTC) Page 6 of 42
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

IN-CSE CSE which resides in the Infrastructure Node 170

LAN Local Area Network 171

MN Middle Node 172

OUI Organizationally Unique Identifier 173

PC Product Class 174

RPC Remote Procedure Call 175

SN Serial Number 176

URI Uniform Resource Identifier 177

URL Uniform Resource Locator 178

USB Universal Serial Bus 179

UUID Universal Unique Identifier 180

XML Extensible Markup Language 181

3.4 Acronyms 182

For the purposes of the present document, the acronyms given in TR-0004 [3] apply. 183

4 Conventions 184

The key words “Shall”, ”Shall not”, “May”, ”Need not”, “Should”, ”Should not” in this document are to be interpreted 185

as described in the oneM2M Drafting Rules [i.1] 186

5 Mapping of basic data types 187

TR-106 [5] specifies the object structure supported by TR-069 enabled devices and specifies the structural requirements 188

for the data hierarchy. This clause includes the mapping attribute data types to TR-181 [6] parameters which follows the 189

conventions of section 3 of TR-106 [5] and data types described in Table 4 of TR-106 [5]. 190

Table 5-1: Data Type Mapping 191

oneM2M Data Types
Mapping to data
types in TR-106

Conversion Notes

xs:boolean boolean

xs:string string Mapping is constrained to the size of the string

xs:unsignedInt unsignedInt

xs:unsignedLong unsignedLong

xs:integer long Mapping is constrained to the size of the long data type.

Xs:positiveInteger unsignedLong Mapping is constrained to a lower limit of 1 and the size of the
unsignedLong data type.

Xs:nonNegativeInteger unsignedLong Mapping is constrained the size of the unsignedLong data type.

Comma separated
Lists

Comma separated
Lists

Data structure is represented by comma separated list as described in
section 3.2.3 of TR-106 [5].

 192

In some instances the conversion of the contents between data types will cause an error to occur (e.g., xs:integer to 193

long). When an error occurs in the conversion of a data type, the STATUS_BAD_REQUEST response status code. 194

6 Mapping of identifiers 195

The TR-069 [4] specification defines three (3) types of devices, known as CPEs, that are capable of being managed 196

from the perspective of the TR-069 agent: 197

 CPE that hosts the TR-069 agent: Section A.3.3.1 Inform of TR-069 [4] defines the required fields for a CPE to 198

be identified. These fields include the OUI and Serial Number of the CPE assigned by the CPE manufacturer. 199

Optionally the manufacturer may assign a Product Class to the CPE. The format of the identifier is as follows: 200

OUI-[PC-]SN. 201

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TTA, TTC) Page 7 of 42
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

 Virtual Device: This type of device is addressed as a CPE. The Virtual Device has its own OUI-[PC-]SN as 202

represented by the CPE Proxier. The CPE Proxier emulates a CWMP agent for each Virtual Device. 203

 Embedded Device: This type of device is addressed as one or more objects within the data model of the CPE that 204

hosts the TR-069 agent. 205

 206

6.1 Mapping of Device identifiers to the Node Resource 207

Node Resources are identified for each instance of an ADN, ASN and MN node and are identified using the M2M Node 208

Identifier (M2M-Node-ID) defined in the oneM2M Functional Architecture [1]. 209

CPE Device identifiers shall map to the nodeID attribute of the <node> resource. The CPE Device identifiers are 210

obtained from the contents of the following attributes: 211

 Device.DeviceInfo.ManufacturerOUI 212

 Device.DeviceInfo.ProductClass 213

 Device.DeviceInfo.SerialNumber 214

 215

Virtual Device identifiers shall map to the nodeID attribute of the <node> resource. The Virtual Device identifiers are 216

obtained from the CPE Proxier using the contents of the attributes: 217

 Device.ManagementServer.VirtualDevice.{i}.ManufacturerOUI 218

 Device.ManagementServer.VirtualDevice.{i}.ProductClass 219

 Device.ManagementServer.VirtualDevice.{i}.SerialNumber 220

 221

Embedded Device identifiers shall map to the nodeID attribute of the <node> resource. The Embedded Device 222

identifiers are obtained using the containing CPE Device or Virtual Device identifiers along with the contents of the 223

attributes of the: 224

 Device.ManagementServer.EmbeddedDevice.{i}.ControllerID 225

 Device.ManagementServer.EmbeddedDevice.{i}.ProxiedDeviceID 226

6.2 Identifier of an object instance 227

The TR-069 [4] specification permits objects to have multiple object instances where each object instance is contained 228

within the objectPath attribute of the Resource within the context of the Resource’s objectId as defined in clause 7.1. 229

In order to allow the AE or CSE that originated the request that manipulates a Resource to easily align the M2M Service 230

Layer with the Resource’s external technology identifier, the value of the object instance “{i}” should be a part of the 231

identifier of the Resource in the M2M Service Layer where possible. For example if the [areaNetwork] resource has an 232

object instance identifier of “Device.X_oneM2M_org_CSE.1.M2MareaNetworkDevice.[foo]” then the M2M Service 233

Layer Resource should be identified using the object instance of the underlying technology (e.g., “/foo” for the 234

Resource areaNetwork). 235

7 Mapping of resources 236

This clause contains all information on how to map management resources from TS-0004 [2] to managed objects and 237

parameters as defined in the TR-181 [6] data model or the Remote Procedure Calls (RPCs) in TR-069 [4]. 238

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TTA, TTC) Page 8 of 42
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

7.1 General mapping assumptions 239

TR-069 [4] specifies a protocol for communication between a CPE (Customer Premises Equipment) and an ACS (Auto-240

Configuration Server). Any TR-069 enabled device has to follow the data model as described in the TR-106 [5] and 241

TR-181 [6] as well as RPCs described in TR-069 [4]. 242

As TR-181 [6] is the model that the Resources are mapped, all Resources shall have the bjected of the TR-181[6] 243

namespace (e.g., “urn:broadband-forum-org:tr-181-2-7-0”). 244

7.1.1 Mapping of Device identifiers 245

The Device identifiers for CPEs are mapped to the Resource Typse [deviceInfo]. 246

For CPE and Virtual Devices map their Device Identifiers (OUI-[PC-]SN) to the manufacturer, deviceType and 247

deviceLabel attributes of the Resource [deviceInfo]. 248

For Embedded Devices, the ControllerID and ProxiedDeviceID parameters of the 249

Device.ManagementServer.EmbeddedDevice.{i} object instance are mapped to the deviceLabel attribute of the 250

Resource [deviceInfo] as a comma separated list: “Device.ManagementServer.EmbeddedDevice.{i}.ControllerID, 251

Device.ManagementServer.EmbeddedDevice.{i}.ProxiedDeviceID”. 252

7.1.2 Mapping of Embedded Devices 253

The TR-181 [6] specification does not provide a mechanism where Embedded Devices provide information related to 254

the Device.DeviceInfo objects and sub-objects. Instead the TR-181 [6] provides this information in a manner that is 255

reliant on the Embedded Device’s underlying technology (e.g., ZigBee®, UpnP). 256

As such the mapping of the [memory] and [battery] Resources are implementation specific for each underlying 257

technology and is outside the scope of this specification. 258

7.2 Resource [deviceInfo] 259

The Resource [deviceInfo] is a read-only Resource that shall map to the Device.DeviceInfo object of TR-181 [6] for 260

CPE and Virtual Devices. 261

The information shall be retrieved using the GetParameterValues RPC of TR-069 [4]. 262

Note: The SerialNumber, ModelNumber, ProductClass attributes for a Virtual device are the same values as the 263

Device.ManagementServer.VirtualDevice.{i} object in the CPE Proxier. 264

Table 7.2-1: Resource [deviceInfo] for CPE and Virtual Devices 265

Attribute Name of
[deviceInfo]

TR-181 Parameter

deviceLabel Device.DeviceInfo.SerialNumber

manufacturer Device.DeviceInfo.Manufacturer

model Device.DeviceInfo.ModelNumber

deviceType Device.DeviceInfo.ProductClass

fwVersion Device.DeviceInfo.SoftwareVersion if the device supports

only 1 software version. If the device support multiple

software versions this shall map to

Device.DeviceInfo.AdditionalSoftwareVersion

swVersion Device.DeviceInfo.SoftwareVersion

hwVersion Device.DeviceInfo.HardwareVersion

 266

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TTA, TTC) Page 9 of 42
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Table 7.2-2: Resource [deviceInfo] for Embedded Devices 267

Attribute Name of
[deviceInfo]

TR-181 Parameter

deviceLabel Comma separated list:

“Device.ManagementServer.EmbeddedDevice.{i}.ControllerID,

Device.ManagementServer.EmbeddedDevice.{i}.ProxiedDeviceID

manufacturer No mapping available

model No mapping available

deviceType No mapping available

fwVersion No mapping available

swVersion No mapping available

hwVersion No mapping available

 268

 269

7.3 Resource [memory] 270

The Resource [memory] is a read-only Resource that shall map to the Device.DeviceInfo.MemoryStatus object of TR-271

181 [6] for CPE and Virtual Devices. 272

The information shall be retrieved using the GetParameterValues RPC of TR-069 [4]. 273

Attempts to modify the attributes of the memory Resource causes an error code “operation unsupported” to be returned. 274

Table 7.3-1: Resource [memory] 275

 276

Attribute Name of
[memory]

TR-181 Parameter

memAvailable Device.DeviceInfo.MemoryStatus.Free

memTotal Device.DeviceInfo.MemoryStatus.Total

 277

7.4 Resource [battery] 278

The Resource [battery] is a read-only Resource that shall map to an instance of 279

Device.DeviceInfo.X_oneM2M_org_BatteryStatus.Battery.{i} object for CPE and Virtual Devices. 280

The information shall be retrieved using the GetParameterValues RPC of TR-069 [4]. 281

Table 7.4-1: Resource [battery] 282

Attribute Name of
[battery]

TR-181 Parameter

batteryLevel Device.DeviceInfo.X_oneM2M_org_BatteryStatus.Battery.{i}.Level

batteryStatus Device.DeviceInfo.X_oneM2M_org_BatteryStatus.Battery.{i}.Status

 283

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TTA, TTC) Page 10 of 42
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

7.5 Resource [areaNwkInfo] 284

The Resource [areaNwkInfo] is a multi-instance Resource where each instance of the Resource shall map to an instance 285

of Device.X_oneM2M_org_CSE.{i}.M2MareaNetwork.{i} object. 286

As the Resource [areaNwkInfo] is a multi-instance Resource, the M2MareaNetwork object is a multi-object instance 287

that can be created and deleted. 288

The M2MareaNetwork instance shall be created using the Add Object RPC of TR-069 [4]. 289

The M2MareaNetwork instance shall be deleted using the Delete Object RPC of TR-069 [4]. 290

The information of an M2MareaNetwork shall be retrieved using the GetParameterValues RPC of TR-069 [4]. 291

The information of an M2MareaNetwork shall be modified using the SetParameterValues RPC of TR-069 [4]. 292

Table 7.5-1: Resource [areaNwkInfo] 293

Attribute Name of
[areaNwkInfo]

X_oneM2M_org Parameter

areaNwkType Device.X_oneM2M_org_CSE.{i}.M2MareaNetwork.{i}.Type

listOfDevices Device.X_oneM2M_org_CSE.{i}.M2MareaNetwork.{i}.ListOfDevices

 294

7.6 Resource [areaNwkDeviceInfo] 295

The Resource [areaNwkDeviceInfo] is a multi-instance Resource where each instance of the Resource shall map to an 296

instance of Device.X_oneM2M_org_CSE.{i}.AreaNetworkDevice.{i} object. 297

As the Resource [areaNwkDeviceInfo] is a multi-instance Resource, the AreaNetworkDevice object is a multi-object 298

instance that can be created and deleted. 299

Instances of the Resource [areaNwkDeviceInfo] are referenced in the listOfDevices attribute of the associated Resource 300

[areaNwkInfo]. 301

The M2MareaNetworkDevice instance shall be created using the Add Object RPC of TR-069 [4]. 302

The M2MareaNetworkDevice instance shall be deleted using the Delete Object RPC of TR-069 [4]. 303

The information of an M2MareaNetworkDevice shall be retrieved using the GetParameterValues RPC of TR-069 [4]. 304

The information of an M2MareaNetworkDevice shall be modified using the SetParameterValues RPC of TR-069 [4]. 305

Table 7.6-1: Resource [areaNwkDeviceInfo] 306

Attribute Name of
[areaNwkDeviceInfo]

X_oneM2M_org Parameter

devId Device.X_oneM2M_org_CSE.{i}.M2MareaNetworkDevice.{i}.Host

devType Device.X_oneM2M_org_CSE.{i}.M2MareaNetworkDevice.{i}.Type

areaNwkId Reference to

Device.X_oneM2M_org_CSE.{i}.M2MareaNetworkDevice.{i}.M2Mar

eaNetwork

sleepInterval Device.X_oneM2M_org_CSE.{i}.M2MareaNetworkDevice.{i}.SleepInt

erval

sleepDuration Device.X_oneM2M_org_CSE.{i}.M2MareaNetworkDevice.{i}.SleepDu

ration

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TTA, TTC) Page 11 of 42
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Attribute Name of
[areaNwkDeviceInfo]

X_oneM2M_org Parameter

status Device.X_oneM2M_org_CSE.{i}.M2MareaNetworkDevice.{i}.Status

listOfNeighbors Device.X_oneM2M_org_CSE.{i}.M2MareaNetworkDevice.{i}.Neighbo

rs

 307

7.7 Resource [eventLog] 308

The Resource [eventLog] is a multi-instance Resource where each instance of the Resource shall map to an instance of 309

Device.DeviceInfo.X_oneM2M_org_Diagnostics.EventLog.{i} object. 310

The EventLog instance shall be created using the Add Object RPC of TR-069 [4]. 311

The EventLog instance shall be deleted using the Delete Object RPC of TR-069 [4]. 312

The information of an EventLog instance shall be retrieved using the GetParameterValues RPC of TR-069 [4]. 313

The information of an EventLog instance shall be updated using the SetParameterValues RPC of TR-069 [4]. 314

 315

Table 7.7-1: Resource [eventLog] 316

Attribute Name of
[eventLog]

TR-181 Parameter

logTypeId Device.DeviceInfo.X_oneM2M_org_Diagnostics.EventLog.{i}.Type

logData Device.DeviceInfo.X_oneM2M_org_Diagnostics.EventLog.{i}.Data

logActionStatus Device.DeviceInfo.X_oneM2M_org_Diagnostics.EventLog.{i}.Status

logStart Set to “True” , the

Device.DeviceInfo.X_oneM2M_org_Diagnostics.EventLog.{i}.Enable

parameter is set to “True”.

logStop Set to “True” , the

Device.DeviceInfo.X_oneM2M_org_Diagnostics.EventLog.{i}.Enable

parameter is set to “False”.

 317

7.8 Resource [deviceCapability] 318

The Resource [deviceCapability] represents a capability of device that can be administratively enabled or disabled. The 319

lists of capabilities that are managed are defined in the enumeration of the capabilityName attribute. The TR-181 [6] 320

data model defines a subset of capabilities listed in the deviceCapability enumeration. The supported device capabilities 321

within TR-181 [6] include: 322

 LAN Interfaces: USB, Wi-Fi, HomePlug, MoCA, UPA 323

 Hardware Capabilities: SmartCardReader 324

 325

The information shall be retrieved using the GetParameterValues RPC of TR-069 [4]. 326

The capabilities shall be enabled and disabled using the SetParameterValues RPC of TR-069 [4]. 327

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TTA, TTC) Page 12 of 42
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Table 7.8-1: Resource [capabilityInstance] 328

Attribute Name of
[capabilityInstance]

TR-181 Parameter

capabilityName This attribute is fixed based on the value of the

capabilityName attribute.

Attached Returns “True”

capabilityActionStatus Status is defined as:

 Success if the SetParameterValues RPC indicates that

the operation was sucessfull.

 Failure if the response to the SetParameterValues

RPCs indicates that the operation failed.

 In process if the SetParameterValues RPC is initiatied

but the response to the SetParameterValues RPC has

not been received.

currentState USB: Device.USB.Interface.{i}.Enable

Wi-Fi: Device.Wi-Fi.Radio.{i}.Enable

HomePlug: Device.HomePlug.Interface.{i}.Enable

MoCA: Device.MoCA.Interface.{i}.Enable

UPA: Device.UPA.Interface.{i}.Enable

SmartCardReader:

Device.SmartCardReaders.SmartCardReader.{i}.Enable

enable USB: Device.USB.Interface.{i}.Enable

Wi-Fi: Device.Wi-Fi.Radio.{i}.Enable

HomePlug: Device.HomePlug.Interface.{i}.Enable

MoCA: Device.MoCA.Interface.{i}.Enable

UPA: Device.UPA.Interface.{i}.Enable

SmartCardReader:

Device.SmartCardReaders.SmartCardReader.{i}.Enable

disable Same parameter is used to disable a capability as the enable

attribute.

 329

7.9 Resource [firmware] 330

The Resource [firmware] represents a firmware instance and is not considered a TR-069 managed entity within the 331

device until the firmware Resource’s update attribute has been written a value of “True”. When this occurs, the TR-069 332

Download RPC shall be invoked. 333

 334

Note: In many instances, the server from which the firmware is downloaded requires authentication in the form of 335

Username and Password credentials. The CSE that executes firmware download shall maintain the mapping of the 336

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TTA, TTC) Page 13 of 42
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

username and password of the download server needed to download the firmware outside the lifecycle of the specific 337

firmware. 338

Table 7.9-1: Resource [firmware] 339

Attribute Name of
[firmware]

RPC Download Arguments

URL URL

update When set to the value of “True” executes the Download

operations with a FileType “1 Firmware Upgrade Image” is

performed.

 Username: Received from the CSE for the download server

where the update is set to “True”.

 Password: Received from the CSE for the download server

where the update is set to “True”.

 CommandKey: Automatically set by the CSE where the

update is set to “True” in order to correlate the

TransferComplete response.

 FileSize: 0 (not used)

 TargetFileName: <empty> (not used)

 DelaySeconds: 0 (immediate)

 SuccessURL: <empty> (not used)

 FailureURL: <empty> (not used)

 340

7.10 Resource [software] 341

The Resource [software] is a multi-instance Resource where each instance of the Resource maps directly to an instance 342

of Device.SoftwareModules.DeploymentUnit.{i} object for the deployment aspects (install, uninstall) of the Resource 343

[software]. The install and uninstall operation of the Resource [software] is performed using a combination of the 344

ChangeDUState and ChangeDUStateComplete RPCs. 345

Once a Resource [software] has been installed, the Resource shall be mapped to the associated 346

Device.SoftwareModules.ExecutionUnit.{i} objects in order to activate and deactivate the associated execution unit. 347

The Resource [software] version and name shall be retrieved using the GetParameterValues RPC of TR-069 [4]. 348

The activate and deactivate operations of the Resource [software] shall be performed by manipulating the 349

Device.SoftwareModules.ExecutionUnit.{i}.RequestedState parameter using the SetParameterValues RPC. 350

Note: The Resource [software] provides support for only 1 Execution Unit per Deployment Unit. If a Deployment Unit 351

is discovered by the M2M Service Layer that contains multiple Execution Units for a Deployment Unit; only 1 352

Execution Unit is exposed. The selection of which Execution Unit is implementation specific. 353

 354

Table 7.10-1: Resource [software] 355

Attribute Name of
[software]

Description

version Device.SoftwareModules.DeploymentUnit.{i}.Version

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TTA, TTC) Page 14 of 42
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Attribute Name of
[software]

Description

name Device.SoftwareModules.DeploymentUnit.{i}.Name

URL Device.SoftwareModules.DeploymentUnit.{i}.URL

install Use the ChangeDUState:InstallOpStruct

installStatus Status is defined as:

 Success if the ChangeDUStateComplete RPC

indicates that the operation was sucessfull.

 Failure if the response to the ChangeDUState or

ChangeDUStateComplete RPCs indicates that the

operation failed.

 In process if the ChangeDUState RPC is initiatied

but the ChangeDUStateComplete RPC has not been

received.

Activate The action that activates software previously installed.

Deactivate The action that deactivates software.

activeStatus Status is defined as:

 Success if the SetParameterValues RPC indicates

that the operation was sucessfull.

 Failure if the response to the SetParameterValues

RPCs indicates that the operation failed.

 In process if the SetParameterValues RPC is

initiatied but the response to the SetParameterValues

RPC has not been received.

 356

Table 7.10-2: RPC ChangeDUState:InstallOpStruct Arguments 357

RPC ChangeDUState:InstallOpStruct Argument

URL: URL of the Server that M2M Node uses to download

the DU.

Username: Username credential of Server that the CPE

uses to download the DU – Supplied by the CSE.

Password: Password credential of Server that the CPE uses

to download the DU – Supplied by the CSE.

UUID: Supplied by the CSE and used to correlate the DU

for the uninstall operation.

ExecurtionEnvRef: <empty> not used

 358

Table 7.10-3: RPC ChangeDUState:UninstallOpStruct Arguments 359

RPC ChangeDUState:Uninstall OpStruct Argument

UUID: UUID of the DU that was installed – Maintained by

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TTA, TTC) Page 15 of 42
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

RPC ChangeDUState:Uninstall OpStruct Argument

the CSE.

ExecutionEnvRef: <empty> not used

 360

7.11 Resource [reboot] 361

The Resource [reboot] maps to either the Reboot RPC or FactoryReset RPC of TR-069 [4]. 362

When the reboot attribute of the Resource [reboot] is set to “True”, the CSE shall execute the Reboot RPC of TR-363

069[4]. 364

When the factoryReset attribute of Resource [reboot] is set to “True”, the CSE shall execute the FactoryReset RPC of 365

TR-069[4]. 366

Table 7.11-1: Resource [reboot] 367

Attribute Name of
[reboot]

Description

reboot Executes the Reboot RPC

factoryReset FactoryReset RPC

 368

Table 7.11-2: RPC Reboot Arguments 369

RPC Reboot Arguments

CommandKey: Automatically set by the CSE where the

reboot is set to “True” in order to correlate the “M-Reboot”

Event from the next Inform.

 370

7.12 Resource [cmdhPolicy] 371

The Resource [cmdhPolicy] represents a set of rules defining which CMDH parameters will be used by default when a 372

request issued by a local originator contains the ec (event category) parameter but not all other CMDH parameters, see 373

clause D.12 of TS-0001 [1]. 374

The Resource [cmdhPolicy] is a multi-instance Resource where each instance of the Resource shall map to an instance 375

of Device.X_oneM2M_org_CSE.{i}.CMDH.Policy.{i} object. 376

The Policy instance shall be created using the Add Object RPC of TR-069 [4]. 377

The Policy instance shall be deleted using the Delete Object RPC of TR-069 [4]. 378

The information of a Policy instance shall be retrieved using the GetParameterValues RPC of TR-069 [4]. 379

The information of a Policy instance shall be updated using the SetParameterValues RPC of TR-069 [4]. 380

Table 7.12-1: Resource [cmdhPolicy] 381

Attribute Name of
[cmdhPolicy]

X_oneM2M_org Parameter

name Device.X_oneM2M_org_CSE.{i}.CMDH.Policy.{i}.Name

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TTA, TTC) Page 16 of 42
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Attribute Name of
[cmdhPolicy]

X_oneM2M_org Parameter

cmdhDefaults Device.X_oneM2M_org_CSE.{i}.CMDH.Policy.{i}.DefaultRule

cmdhLimits Device.X_oneM2M_org_CSE.{i}.CMDH.Policy.{i}.LimitRules

cmdhNetworkAccessRules Device.X_oneM2M_org_CSE.{i}.CMDH.Policy.{i}.NetworkAccessECRules

cmdhBuffer Device.X_oneM2M_org_CSE.{i}.CMDH.Policy.{i}.BufferRules

 382

7.12.1 Resource [activeCmdhPolicy] 383

The Resource [activeCmdhPolicy] provides a link to the currently active set of CMDH policies, see clause D.12.1 of 384

TS-0001 [1]. 385

The Resource [activeCmdhPolicy] is mapped to the Enable parameter of the 386

Device.X_oneM2M_org_CSE.{i}.CMDH.Policy.{i} object. 387

The information of a Policy instance shall be updated using the SetParameterValues RPC of TR-069 [4]. 388

Table 7.12.1-1: Resource [activeCmdhPolicy] 389

Attribute Name of
[activeCmdhPolicy]

X_oneM2M_org Parameter

cmdhPolicy Device.X_oneM2M_org_CSE.{i}.CMDH.Policy.{i}.Enable

At most one Policy instance shall be enabled at a time. As

such the Policy instance that has the Enable parameter with

a value of “True” is the active CMDH policy.

 390

 391

7.12.2 Resource [cmdhDefaults] 392

The Resource [cmdhDefaults] defines default CMDH policy values, see clause D.12.2 of TS-0001 [1]. 393

The Resource [cmdhDefaults] is a multi-instance Resource where each instance of the Resource shall map to an 394

instance of Device.X_oneM2M_org_CSE.{i}.CMDH.Default.{i} object. 395

The Default instance shall be created using the Add Object RPC of TR-069 [4]. 396

The Default instance shall be deleted using the Delete Object RPC of TR-069 [4]. 397

The information of a Default instance shall be retrieved using the GetParameterValues RPC of TR-069 [4]. 398

The information of a Default instance shall be updated using the SetParameterValues RPC of TR-069 [4]. 399

Table 7.12.2-1: Resource [cmdhDefaults] 400

Attribute Name of
[cmdhDefaults]

X_oneM2M_org Parameter

cmdhDefEcValue Device.X_oneM2M_org_CSE.{i}.CMDH.Default.{i}.DefaultECRules

cmdhEcDefParamValues Device.X_oneM2M_org_CSE.{i}.CMDH.Default.{i}.DefaultECParamRules

 401

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TTA, TTC) Page 17 of 42
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

7.12.3 Resource [cmdhDefEcValues] 402

The Resource [cmdhDefEcValues] represents a value for the ec (event category) parameter of an incoming request, see 403

clause D.12.3 of TS-0001 [1]. 404

The Resource [cmdhDefEcValues] is a multi-instance Resource where each instance of the Resource shall map to an 405

instance of Device.X_oneM2M_org_CSE.{i}.CMDH.DefaultECRule.{i} object. 406

The DefaultECRule instance shall be created using the Add Object RPC of TR-069 [4]. 407

The DefaultECRule instance shall be deleted using the Delete Object RPC of TR-069 [4]. 408

The information of a DefaultECRule instance shall be retrieved using the GetParameterValues RPC of TR-069 [4]. 409

The information of a DefaultECRule instance shall be updated using the SetParameterValues RPC of TR-069 [4]. 410

Table 7.12.3-1: Resource [cmdhDefEcValues] 411

Attribute Name of
[cmdhDefEcValues]

X_oneM2M_org Parameter

order Device.X_oneM2M_org_CSE.{i}.CMDH.DefaultECRule.{i}.Order

defEcValue Device.X_oneM2M_org_CSE.{i}.CMDH.DefaultECRule.{i}.EventCategory

requestOrigin Device.X_oneM2M_org_CSE.{i}.CMDH.DefaultECRule.{i}.RequestOrigin

requestContext Device.X_oneM2M_org_CSE.{i}.CMDH.DefaultECRule.{i}.RequestContext

requestContextNotification Device.X_oneM2M_org_CSE.{i}.CMDH.DefaultECRule.{i}.RequestContextNotificationEnable

requestCharacteristics Device.X_oneM2M_org_CSE.{i}.CMDH.DefaultECRule.{i}.RequestCharacteristics

 412

7.12.4 Resource [cmdhEcDefParamValues] 413

The Resource [cmdhEcDefParamValues] represents a specific set of default values for the CMDH related parameters 414

rqet (request expiration timestamp), rset (result expiration timestamp), oet (operational execution time), rp (response 415

persistence) and da (delivery aggregation) that are applicable for a given ec (event category) if these parameters are not 416

specified in the request, see clause D.12.4 of TS-0001 [1]. 417

The Resource [cmdhEcDefParamValues] is a multi-instance Resource where each instance of the Resource shall map to 418

an instance of Device.X_oneM2M_org_CSE.{i}.CMDH.DefaultECParamRule.{i} object. 419

The DefaultECParamRule instance shall be created using the Add Object RPC of TR-069 [4]. 420

The DefaultECParamRule instance shall be deleted using the Delete Object RPC of TR-069 [4]. 421

The information of a DefaultECParamRule instance shall be retrieved using the GetParameterValues RPC of TR-069 422

[4]. 423

The information of a DefaultECParamRule instance shall be updated using the SetParameterValues RPC of TR-069 [4]. 424

Table 7.12.4-1: Resource [cmdhEcDefParamValues] 425

Attribute Name of
[cmdhEcDefParamValues]

X_oneM2M_org Parameter

applicableEventCategory Device.X_oneM2M_org_CSE.{i}.CMDH.DefaultECParamRule.{i}.EventCategories

defaultRequestExpTime Device.X_oneM2M_org_CSE.{i}.CMDH.DefaultECParamRule.{i}.RequestExpTime

defaultResultExpTime Device.X_oneM2M_org_CSE.{i}.CMDH.DefaultECParamRule.{i}.ResultExpTime

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TTA, TTC) Page 18 of 42
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Attribute Name of
[cmdhEcDefParamValues]

X_oneM2M_org Parameter

defaultOpExecTime Device.X_oneM2M_org_CSE.{i}.CMDH.DefaultECParamRule.{i}.OperationExecTime

defaultRespPersistence Device.X_oneM2M_org_CSE.{i}.CMDH.DefaultECParamRule.{i}.ResponsePersistence

defaultDelAggregation Device.X_oneM2M_org_CSE.{i}.CMDH.DefaultECParamRule.{i}.DeliveryAggregation

 426

7.12.5 Resource [cmdhLimits] 427

The Resource [cmdhLimits] represents limits for CMDH related parameter values, see clause D.12.5 of TS-0001 [1]. 428

The Resource [cmdhLimits] is a multi-instance Resource where each instance of the Resource shall map to an instance 429

of Device.X_oneM2M_org_CSE.{i}.CMDH.Limit.{i} object. 430

The Limit instance shall be created using the Add Object RPC of TR-069 [4]. 431

The Limit instance shall be deleted using the Delete Object RPC of TR-069 [4]. 432

The information of a Limit instance shall be retrieved using the GetParameterValues RPC of TR-069 [4]. 433

The information of a Limit instance shall be updated using the SetParameterValues RPC of TR-069 [4]. 434

Table 7.12.5-1: Resource [cmdhLimits] 435

Attribute Name of
[cmdhLimits]

X_oneM2M_org Parameter

order Device.X_oneM2M_org_CSE.{i}.CMDH.Limit.{i}.Order

requestOrigin Device.X_oneM2M_org_CSE.{i}.CMDH.Limit.{i}.RequestOrigin

requestContext Device.X_oneM2M_org_CSE.{i}.CMDH.Limit.{i}.RequestContext

requestContextNotification Device.X_oneM2M_org_CSE.{i}.CMDH.Limit.{i}.RequestContextNotificationEnable

requestCharacteristics Device.X_oneM2M_org_CSE.{i}.CMDH.Limit.{i}.RequestCharacteristics

limitsEventCategory Device.X_oneM2M_org_CSE.{i}.CMDH.Limit.{i}.EventCategories

limitsRequestExpTime Device.X_oneM2M_org_CSE.{i}.CMDH.Limit.{i}.RequestExpTime

limitsResultExpTime Device.X_oneM2M_org_CSE.{i}.CMDH.Limit.{i}.ResultExpTime

limitsOpExecTime Device.X_oneM2M_org_CSE.{i}.CMDH.Limit.{i}.OperationExecTime

limitsRespPersistence Device.X_oneM2M_org_CSE.{i}.CMDH.Limit.{i}.ResponsePersistence

limitsDelAggregation Device.X_oneM2M_org_CSE.{i}.CMDH.Limit.{i}.DeliveryAggregation

 436

 437

7.12.6 Resource [cmdhNetworkAccessRules] 438

The Resource [cmdhNetworkAccessRules] defines the usage of underlying networks for forwarding information to 439

other CSEs during processing of CMDH-related requests in a CSE, see clause D.12.6 of TS-0001 [1]. 440

The Resource [cmdhNetworkAccessRules] is a multi-instance Resource where each instance of the Resource shall map 441

to an instance of Device.X_oneM2M_org_CSE.{i}.CMDH.NetworkAccessECRule.{i} object. 442

The NetworkAccessECRule instance shall be created using the Add Object RPC of TR-069 [4]. 443

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TTA, TTC) Page 19 of 42
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

The NetworkAccessECRule instance shall be deleted using the Delete Object RPC of TR-069 [4]. 444

The information of a NetworkAccessECRule instance shall be retrieved using the GetParameterValues RPC of TR-069 445

[4]. 446

The information of a NetworkAccessECRule instance shall be updated using the SetParameterValues RPC of TR-069 447

[4]. 448

Table 7.12.6-1: Resource [cmdhNetworkAccessRules] 449

Attribute Name of
[cmdhNetworkAccessRules]

X_oneM2M_org Parameter

applicableEventCategories Device.X_oneM2M_org_CSE.{i}.CMDH.NetworkAccessECRule.{i}.EventCategories

cmdhNwAccessRule Device.X_oneM2M_org_CSE.{i}.CMDH.NetworkAccessECRule.{i}.NetworkAccessRules

 450

 451

7.12.7 Resource [cmdhNwAccessRule] 452

The Resource [cmdhNwAccessRule] define limits in usage of specific underlying networks for forwarding information 453

to other CSEs during processing of CMDH-related requests, see clause D.12.7 of TS-0001 [1]. 454

The Resource [cmdhNwAccessRule] is a multi-instance Resource where each instance of the Resource shall map to an 455

instance of Device.X_oneM2M_org_CSE.{i}.CMDH.NetworkAccessECRule.{i} object. 456

The NetworkAccessRule instance shall be created using the Add Object RPC of TR-069 [4]. 457

The NetworkAccessRule instance shall be deleted using the Delete Object RPC of TR-069 [4]. 458

The information of a NetworkAccessRule instance shall be retrieved using the GetParameterValues RPC of TR-069 [4]. 459

The information of a NetworkAccessRule instance shall be updated using the SetParameterValues RPC of TR-069 [4]. 460

Table 7.12.7-1: Resource [cmdhNwAccessRule] 461

Attribute Name of
[cmdhNwAccessRule]

X_oneM2M_org Parameter

targetNetwork Device.X_oneM2M_org_CSE.{i}.CMDH.NetworkAccessRule.{i}.TargetNetworks

minReqVolume Device.X_oneM2M_org_CSE.{i}.CMDH.NetworkAccessRule.{i}.MinimumReqVolume

backOffParameters Device.X_oneM2M_org_CSE.{i}.CMDH.NetworkAccessRule.{i}.BackoffTime

 Device.X_oneM2M_org_CSE.{i}.CMDH.NetworkAccessRule.{i}.BackoffTimeIncrement

 Device.X_oneM2M_org_CSE.{i}.CMDH.NetworkAccessRule.{i}.MaximumBackoffTime

otherConditions Device.X_oneM2M_org_CSE.{i}.CMDH.NetworkAccessRule.{i}.OtherConditions

allowedSchedule Device.X_oneM2M_org_CSE.{i}.CMDH.NetworkAccessRule.{i}.AllowedSchedule

 462

 463

7.12.8 Resource [cmdhBuffer] 464

The Resource [cmdhBuffer] represents limits in usage of buffers for temporarily storing information that needs to be 465

forwarded to other CSEs during processing of CMDH-related requests in a CSE, see clause D.12.8 of TS-0001 [1]. 466

The Resource [cmdhBuffer] is a multi-instance Resource where each instance of the Resource shall map to an instance 467

of Device.X_oneM2M_org_CSE.{i}.CMDH.Buffer.{i} object. 468

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TTA, TTC) Page 20 of 42
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

The Buffer instance shall be created using the Add Object RPC of TR-069 [4]. 469

The Buffer instance shall be deleted using the Delete Object RPC of TR-069 [4]. 470

The information of a Buffer instance shall be retrieved using the GetParameterValues RPC of TR-069 [4]. 471

The information of a Buffer instance shall be updated using the SetParameterValues RPC of TR-069 [4]. 472

Table 7.12.8-1: Resource [cmdhBuffer] 473

Attribute Name of
[cmdhBuffer]

X_oneM2M_org Parameter

applicableEventCategory Device.X_oneM2M_org_CSE.{i}.CMDH.Buffer.{i}.EventCategories

maxBufferSize Device.X_oneM2M_org_CSE.{i}.CMDH.Buffer.{i}.MaximumBufferSize

storagePriority Device.X_oneM2M_org_CSE.{i}.CMDH.Buffer.{i}.StoragePriority

 474

7.13 Resource Type <mgmtCmd> 475

Each mgmtCmd Resource shall map to BBF TR-069 RPC commands based on the value of cmdType. 476

Accordingly, execReqArgs shall contain arguments related to the corresponding BBF TR-069 RPCs. The 477

details about corresponding procedure mapping are described in section 8.2. 478

Table 7.13-1: Resource Type <mgmtCmd> 479

Attribute cmdType of
mgmtCmd

Attribute execReqArgs of mgmtCmd

cmdType = RESET
Shall include all arguments related to BBF

FactoryReset RPC

cmdType = REBOOT
Shall include all arguments related to BBF Reboot

RPC

cmdType = UPLOAD
Shall include all arguments related to BBF Reboot

RPC

cmdType = DOWNLOAD
Shall contain all arguments related to BBF Reboot

RPC

cmdType =

SOFTWAREINSTALL

Shall contain all arguments related to BBF

ChangeDUState RPC which shall contain

“InstallOpStruct” structure.

cmdType =

SOFTWAREUNINSTALL

Shall contain all arguments related to BBF

ChangeDUState RPC which shall contain

“UninstallOpStruct” structure.

 480

7.14 Resource Type <execInstance> 481

The <execInstance> resource from TS-0004 [2] shall map to BBF CancelTransfer RPC commands when it is 482

disabled/cancelled using a Update operation or deleted using a Delete operation. The details are described in 483

section 8.2. 484

485

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TTA, TTC) Page 21 of 42
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

 486

8 Mapping of procedures for management 487

This clause contains all information on how to map management resource primitives from TS-0004 [2] to the Remote 488

Procedure Calls (RPCs) in TR-069 [4]. 489

8.1 Resource Type <mgmtObj> primitive mappings 490

This clause contains all information on how to map Resource Type <mgmtObj> primitives from TS-0004 [2] to the 491

Remote Procedure Calls (RPCs) in TR-069 [4]. 492

8.1.1 Alias-Based Addressing Mechanism 493

In order to utilize the Alias-Based Addressing Mechanism, the mechanism has to be supported by the ACS and CPE in 494

order to map the M2M Service Layer identifier for the Resource instance to the CPE object instance. If the Alias-Based 495

Addressing Mechanism feature is not supported by either the ACS or CPE, the CSE has to retain the mapping of the 496

these M2M Resource instance identifiers. 497

8.1.2 Create primitive mapping 498

The Create Request and Response primitives shall map to the AddObject RPC. The AddObject RPC is defined in TR-499

069 [4] as a synchronous RPC and returns a successful response or one of the following fault codes in Table 8.1.2-1. 500

Table 8.1.2-1: AddObject Fault Code Mapping 501

Fault code Description Response Status Code

9001 Request denied (no reason specified) STATUS_BAD_REQUEST

9002 Internal error STATUS_BAD_REQUEST

9003 Invalid arguments STATUS_BAD_REQUEST

9004 Resources exceeded (when used in association with

SetParameterValues, this cannot be used to indicate Parameters

in error)

STATUS_BAD_REQUEST

9005 Invalid Parameter name (associated with

Set/GetParameterValues, GetParameterNames,

Set/GetParameterAttributes, AddObject, and DeleteObject)

STATUS_NOT_IMPLEMENTED

 502

8.1.2.1 M2M Service Layer Resource Instance Identifier mapping 503

When the Resource is a multi-instance Resource, the AddObject RPC should utilize the Alias-Based Addressing 504

Mechanism as defined in Section 3.6.1 of TR-069 [4] in order to use the Resource instance value of the URI. 505

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TTA, TTC) Page 22 of 42
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

8.1.3 Delete primitive mapping 506

8.1.3.1 Delete primitive mapping for deletion of Object Instances 507

The Delete Request and Response primitives that results in the deletion of a Resource shall map to the DeleteObject 508

RPC. The DeleteObject RPC is defined in TR-069 [4] as a synchronous RPC and returns a successful response or one of 509

the following fault codes in Table 8.1.3.1-1. 510

Table 8.1.3.1-1: DeleteObject Fault Code Mapping 511

Fault code Description Response Status Code

9001 Request denied (no reason specified) STATUS_BAD_REQUEST

9002 Internal error STATUS_BAD_REQUEST

9003 Invalid arguments STATUS_BAD_REQUEST

9005 Invalid Parameter name (associated with

Set/GetParameterValues, GetParameterNames,

Set/GetParameterAttributes, AddObject, and DeleteObject)

STATUS_NOT_IMPLEMENTED

 512

8.1.3.2 Delete primitive mapping for software un-install operation 513

The Delete Request and Response primitives that results in a software un-install operation (e.g., Resource [software]) 514

shall use the ChangeDUState mechanism defined in TR-069 [4]. The ChangeDUState mechanism is an asynchronous 515

command that consists of the synchronous ChangeDUState RPC for the un-installation request and the asynchronous 516

ChangeDUStateComplete RPC. The ChangeDUState RPC returns a successful response or one of the following fault 517

codes in Table 8.1.3.2-1. A successful response means that the CPE has accepted the ChangeDUState RPC. 518

Table 8.1.3.2-1: ChangeDUState Fault Code Mapping 519

Fault code Description Response Status Code

9000 Method not supported STATUS_BAD_REQUEST

9001 Request denied (no reason specified) STATUS_BAD_REQUEST

9002 Internal error STATUS_BAD_REQUEST

9004 Resources exceeded (when used in association with

SetParameterValues, this cannot be used to indicate Parameters in

error)

STATUS_BAD_REQUEST

 520

Once the CPE has attempted to change the state of the deployment unit, the CPE reports the result of the state change 521

operation using the ChangeDUStateComplete RPC. The ChangeDUStateComplete RPC indicates a successful operation 522

or one of the following fault codes in Table 8.1.3.2-2. 523

Table 8.1.3.2-2: ChangeDUStateComplete Fault Code Mapping 524

Fault code Description Response Status Code

9001 Request denied (no reason specified) STATUS_BAD_REQUEST

9003 Invalid arguments STATUS_BAD_REQUEST

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TTA, TTC) Page 23 of 42
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Fault code Description Response Status Code

9012 File transfer server authentication failure (associated with Upload,

Download, TransferComplete, AutonomousTransferComplete,

DUStateChangeComplete, or AutonomousDUStateChangeComplete

methods).

STATUS_BAD_REQUEST

9013 Unsupported protocol for file transfer (associated with Upload,

Download, ScheduleDownload, DUStateChangeComplete, or

AutonomousDUStateChangeComplete methods).

STATUS_BAD_REQUEST

9015 File transfer failure: unable to contact file server (associated with

Download, TransferComplete, AutonomousTransferComplete,

DUStateChangeComplete, or AutonomousDUStateChangeComplete

methods).

STATUS_BAD_REQUEST

9016 File transfer failure: unable to access file (associated with Download,

TransferComplete, AutonomousTransferComplete,

DUStateChangeComplete, or AutonomousDUStateChangeComplete

methods).

STATUS_BAD_REQUEST

9017 File transfer failure: unable to complete download (associated with

Download, TransferComplete, AutonomousTransferComplete,

DUStateChangeComplete, or AutonomousDUStateChangeComplete

methods).

STATUS_BAD_REQUEST

9018 File transfer failure: file corrupted or otherwise unusable (associated

with Download, TransferComplete, AutonomousTransferComplete,

DUStateChangeComplete, or AutonomousDUStateChangeComplete

methods).

STATUS_BAD_REQUEST

9022 Invalid UUID Format (associated with DUStateChangeComplete or

AutonomousDUStateChangeComplete methods: Install, Update, and

Uninstall)

STATUS_BAD_REQUEST

9023 Unknown Execution Environment (associated with

DUStateChangeComplete or AutonomousDUStateChangeComplete

methods: Install only)

STATUS_BAD_REQUEST

9024 Disabled Execution Environment (associated with

DUStateChangeComplete or AutonomousDUStateChangeComplete

methods: Install, Update, and Uninstall)

STATUS_BAD_REQUEST

9025 Deployment Unit to Execution Environment Mismatch (associated

with DUStateChangeComplete or

AutonomousDUStateChangeComplete methods: Install and Update)

STATUS_BAD_REQUEST

9026 Duplicate Deployment Unit (associated with

DUStateChangeComplete or AutonomousDUStateChangeComplete

methods: Install only)

STATUS_BAD_REQUEST

9027 System Resources Exceeded (associated with

DUStateChangeComplete or AutonomousDUStateChangeComplete

methods: Install and Update)

STATUS_BAD_REQUEST

9028 Unknown Deployment Unit (associated with

DUStateChangeComplete or AutonomousDUStateChangeComplete

methods: Update and Uninstall)

STATUS_BAD_REQUEST

9029 Invalid Deployment Unit State (associated with

DUStateChangeComplete or AutonomousDUStateChangeComplete

methods: Install, Update and Uninstall)

STATUS_BAD_REQUEST

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TTA, TTC) Page 24 of 42
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Fault code Description Response Status Code

9030 Invalid Deployment Unit Update – Downgrade not permitted

(associated with DUStateChangeComplete or

AutonomousDUStateChangeComplete methods: Update only)

STATUS_BAD_REQUEST

9031 Invalid Deployment Unit Update – Version not specified (associated

with DUStateChangeComplete or

AutonomousDUStateChangeComplete methods: Update only)

STATUS_BAD_REQUEST

9032 Invalid Deployment Unit Update – Version already exists (associated

with DUStateChangeComplete or

AutonomousDUStateChangeComplete methods: Update only)

STATUS_BAD_REQUEST

 525

8.1.4 Update primitive mapping 526

8.1.4.1 Update primitive mapping for Parameter modifications 527

The Update Request and Response primitives that modifies the value of Resource attributes shall map to the 528

SetParameterValues RPC. The SetParametersValue RPC is defined in TR-069 [4] as a synchronous RPC and returns a 529

successful response or one of the following fault codes in Table 8.1.4.1-1. 530

Table 8.1.4.1-1: SetParameterValues Fault Code Mapping 531

Fault code Description Response Status Code

9001 Request denied (no reason specified) STATUS_BAD_REQUEST

9002 Internal error STATUS_BAD_REQUEST

9003 Invalid arguments STATUS_BAD_REQUEST

9004 Resources exceeded (when used in association with

SetParameterValues, this cannot be used to indicate Parameters in

error)

STATUS_BAD_REQUEST

9005 Invalid Parameter name (associated with Set/GetParameterValues,

GetParameterNames, Set/GetParameterAttributes, AddObject, and

DeleteObject)

STATUS_NOT-

IMPLEMENTED

9006 Invalid Parameter type (associated with SetParameterValues) STATUS_BAD_REQUEST

9007 Invalid Parameter value (associated with SetParameterValues) STATUS_BAD_REQUEST

9008 Attempt to set a non-writable Parameter (associated with

SetParameterValues)

STATUS_BAD_REQUEST

 532

8.1.4.2 Update primitive mapping for upload file transfer operations 533

The Update Request and Response primitives that results in an upload file transfer operation (e.g., logStop attribute of 534

the Resource [eventLog]) shall use the Upload mechanism defined in TR-069 [4]. The Upload mechanism is an 535

asynchronous command that consists of the synchronous Upload RPC for the Upload and the asynchronous 536

TransferComplete RPC. The Upload RPC returns a successful response or one of the following fault codes in Table 537

8.1.4.2-1. A successful response means that the CPE has accepted the Upload RPC. 538

Table 8.1.4.2-1: Upload Fault Code Mapping 539

Fault code Description Response Status Code

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TTA, TTC) Page 25 of 42
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Fault code Description Response Status Code

9000 Method not supported STATUS_BAD_REQUEST

9001 Request denied (no reason specified) STATUS_BAD_REQUEST

9002 Internal error STATUS_BAD_REQUEST

9003 Invalid arguments STATUS_BAD_REQUEST

9004 Resources exceeded (when used in association with

SetParameterValues, this cannot be used to indicate Parameters in

error)

STATUS_BAD_REQUEST

9011 Upload failure (associated with Upload, TransferComplete or

AutonomousTransferComplete methods).

STATUS_BAD_REQUEST

9012 File transfer server authentication failure (associated with Upload,

Download, TransferComplete, AutonomousTransferComplete,

DUStateChangeComplete, or AutonomousDUStateChangeComplete

methods).

STATUS_BAD_REQUEST

9013 Unsupported protocol for file transfer (associated with Upload,

Download, ScheduleDownload, DUStateChangeComplete, or

AutonomousDUStateChangeComplete methods).

STATUS_BAD_REQUEST

 540

Once the CPE has attempted to upload the file, the CPE reports the result of the Upload operation using the 541

TransferComplete RPC. The TransferComplete RPC indicates a successful operation or one of the following fault codes 542

in Table 8.1.4.2-2. 543

Table 8.1.4.2-2: TransferComplete Fault Code Mapping 544

Fault code Description Response Status Code

9001 Request denied (no reason specified) STATUS_BAD_REQUEST

9002 Internal error STATUS_BAD_REQUEST

9010 File transfer failure (associated with Download, ScheduleDownload,

TransferComplete or AutonomousTransferComplete methods).

STATUS_BAD_REQUEST

9011 Upload failure (associated with Upload, TransferComplete or

AutonomousTransferComplete methods).

STATUS_BAD_REQUEST

9012 File transfer server authentication failure (associated with Upload,

Download, TransferComplete, AutonomousTransferComplete,

DUStateChangeComplete, or AutonomousDUStateChangeComplete

methods).

STATUS_BAD_REQUEST

9014 File transfer failure: unable to join multicast group (associated with

Download, TransferComplete or AutonomousTransferComplete

methods).

STATUS_BAD_REQUEST

9015 File transfer failure: unable to contact file server (associated with

Download, TransferComplete, AutonomousTransferComplete,

DUStateChangeComplete, or AutonomousDUStateChangeComplete

methods).

STATUS_BAD_REQUEST

9016 File transfer failure: unable to access file (associated with Download,

TransferComplete, AutonomousTransferComplete,

DUStateChangeComplete, or AutonomousDUStateChangeComplete

methods).

STATUS_BAD_REQUEST

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TTA, TTC) Page 26 of 42
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Fault code Description Response Status Code

9017 File transfer failure: unable to complete download (associated with

Download, TransferComplete, AutonomousTransferComplete,

DUStateChangeComplete, or AutonomousDUStateChangeComplete

methods).

STATUS_BAD_REQUEST

9018 File transfer failure: file corrupted or otherwise unusable (associated

with Download, TransferComplete, AutonomousTransferComplete,

DUStateChangeComplete, or AutonomousDUStateChangeComplete

methods).

STATUS_BAD_REQUEST

9019 File transfer failure: file authentication failure (associated with

Download, TransferComplete or AutonomousTransferComplete

methods).

STATUS_BAD_REQUEST

9020 File transfer failure: unable to complete download within specified

time windows (associated with TransferComplete method).

STATUS_BAD_REQUEST

 545

8.1.4.3 Update primitive mapping for download file transfer operations 546

The Update Request and Response primitives that results in a download file transfer operation (e.g., update attribute of 547

Resource [firmware]) shall use the Download mechanism defined in TR-069 [4]. The Download mechanism is an 548

asynchronous command that consists of the synchronous Download RPC for the Download and the asynchronous 549

TransferComplete RPC. The Download RPC returns a successful response or one of the following fault codes in Table 550

8.1.4.3-1. A successful response means that the CPE has accepted the Download RPC. 551

Table 8.1.4.3-1: Download Fault Code Mapping 552

Fault code Description Response Status Code

9000 Method not supported STATUS_BAD_REQUEST

9001 Request denied (no reason specified) STATUS_BAD_REQUEST

9002 Internal error STATUS_BAD_REQUEST

9003 Invalid arguments STATUS_BAD_REQUEST

9004 Resources exceeded (when used in association with

SetParameterValues, this cannot be used to indicate Parameters in

error)

STATUS_BAD_REQUEST

9010 File transfer failure (associated with Download, ScheduleDownload,

TransferComplete or AutonomousTransferComplete methods).

STATUS_BAD_REQUEST

9012 File transfer server authentication failure (associated with Upload,

Download, TransferComplete, AutonomousTransferComplete,

DUStateChangeComplete, or AutonomousDUStateChangeComplete

methods).

STATUS_BAD_REQUEST

9013 Unsupported protocol for file transfer (associated with Upload,

Download, ScheduleDownload, DUStateChangeComplete, or

AutonomousDUStateChangeComplete methods).

STATUS_BAD_REQUEST

 553

Once the CPE has attempted to download the file, the CPE reports the result of the download operation using the 554

TransferComplete RPC. The TransferComplete RPC indicates a successful operation or one of the following fault codes 555

in Table 8.1.4.3-2. 556

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TTA, TTC) Page 27 of 42
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Table 8.1.4.3-2: TransferComplete Fault Code Mapping 557

Fault code Description Response Status Code

9001 Request denied (no reason specified) STATUS_BAD_REQUEST

9002 Internal error STATUS_BAD_REQUEST

9010 File transfer failure (associated with Download, ScheduleDownload,

TransferComplete or AutonomousTransferComplete methods).

STATUS_BAD_REQUEST

9011 Upload failure (associated with Upload, TransferComplete or

AutonomousTransferComplete methods).

STATUS_BAD_REQUEST

9012 File transfer server authentication failure (associated with Upload,

Download, TransferComplete, AutonomousTransferComplete,

DUStateChangeComplete, or AutonomousDUStateChangeComplete

methods).

STATUS_BAD_REQUEST

9014 File transfer failure: unable to join multicast group (associated with

Download, TransferComplete or AutonomousTransferComplete

methods).

STATUS_BAD_REQUEST

9015 File transfer failure: unable to contact file server (associated with

Download, TransferComplete, AutonomousTransferComplete,

DUStateChangeComplete, or AutonomousDUStateChangeComplete

methods).

STATUS_BAD_REQUEST

9016 File transfer failure: unable to access file (associated with Download,

TransferComplete, AutonomousTransferComplete,

DUStateChangeComplete, or AutonomousDUStateChangeComplete

methods).

STATUS_BAD_REQUEST

9017 File transfer failure: unable to complete download (associated with

Download, TransferComplete, AutonomousTransferComplete,

DUStateChangeComplete, or AutonomousDUStateChangeComplete

methods).

STATUS_BAD_REQUEST

9018 File transfer failure: file corrupted or otherwise unusable (associated

with Download, TransferComplete, AutonomousTransferComplete,

DUStateChangeComplete, or AutonomousDUStateChangeComplete

methods).

STATUS_BAD_REQUEST

9019 File transfer failure: file authentication failure (associated with

Download, TransferComplete or AutonomousTransferComplete

methods).

STATUS_BAD_REQUEST

9020 File transfer failure: unable to complete download within specified

time windows (associated with TransferComplete method).

STATUS_BAD_REQUEST

 558

8.1.4.4 Update primitive mapping for reboot operation 559

The Update Request and Response primitives that results in a reboot operation (e.g., reboot attribute of Resource 560

[reboot]) shall use the Reboot RPC defined in TR-069 [4]. The Reboot RPC is asynchronous command. The Reboot 561

RPC returns a successful response or one of the following fault codes in Table 8.1.4.4-1. 562

Table 8.1.4.4-1: Reboot Fault Code Mapping 563

Fault code Description Response Status Code

9001 Request denied (no reason specified) STATUS_BAD_REQUEST

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TTA, TTC) Page 28 of 42
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Fault code Description Response Status Code

9002 Internal error STATUS_BAD_REQUEST

9003 Invalid arguments STATUS_BAD_REQUEST

 564

8.1.4.5 Update primitive mapping for factory reset operation 565

The Update Request and Response primitives that results in a factory reset operation (e.g., factoryReset attribute of 566

Resource [reboot]) shall use the FactoryReset RPC defined in TR-069 [4]. The FactoryReset RPC is an asynchronous 567

command. The FactoryReset RPC returns a successful response or one of the following fault codes in Table 8.1.4.5-1. 568

Table 8.1.4.5-1: FactoryReset Fault Code Mapping 569

Fault code Description Response Status Code

9000 Method not supported STATUS_BAD_REQUEST

9001 Request denied (no reason specified) STATUS_BAD_REQUEST

9002 Internal error STATUS_BAD_REQUEST

9003 Invalid arguments STATUS_BAD_REQUEST

 570

8.1.4.6 Update primitive mapping for software install operation 571

The Update Request and Response primitives that results in a software installation operation (e.g., install attribute of 572

Resource [software]) shall use the ChangeDUState mechanism defined in TR-069 [4]. The ChangeDUState mechanism 573

is an asynchronous command that consists of the synchronous ChangeDUState RPC for the download and the 574

asynchronous ChangeDUStateComplete RPC. The ChangeDUState RPC returns a successful response or one of the 575

following fault codes in Table 8.1.4.6-1. A successful response means that the CPE has accepted the ChangeDUState 576

RPC. 577

Table 8.1.4.6-1: ChangeDUState Fault Code Mapping 578

Fault code Description Response Status Code

9000 Method not supported STATUS_BAD_REQUEST

9001 Request denied (no reason specified) STATUS_BAD_REQUEST

9002 Internal error STATUS_BAD_REQUEST

9004 Resources exceeded (when used in association with

SetParameterValues, this cannot be used to indicate Parameters in

error)

STATUS_BAD_REQUEST

 579

Once the CPE has attempted to change the state of the deployment unit, the CPE reports the result of the state change 580

operation using the ChangeDUStateComplete RPC. The ChangeDUStateComplete RPC indicates a successful operation 581

or one of the following fault codes in Table 8.1.4.6-2. 582

Table 8.1.4.6-2: ChangeDUStateComplete Fault Code Mapping 583

Fault code Description Response Status Code

9001 Request denied (no reason specified) STATUS_BAD_REQUEST

9003 Invalid arguments STATUS_BAD_REQUEST

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TTA, TTC) Page 29 of 42
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Fault code Description Response Status Code

9012 File transfer server authentication failure (associated with Upload,

Download, TransferComplete, AutonomousTransferComplete,

DUStateChangeComplete, or AutonomousDUStateChangeComplete

methods).

STATUS_BAD_REQUEST

9013 Unsupported protocol for file transfer (associated with Upload,

Download, ScheduleDownload, DUStateChangeComplete, or

AutonomousDUStateChangeComplete methods).

STATUS_BAD_REQUEST

9015 File transfer failure: unable to contact file server (associated with

Download, TransferComplete, AutonomousTransferComplete,

DUStateChangeComplete, or AutonomousDUStateChangeComplete

methods).

STATUS_BAD_REQUEST

9016 File transfer failure: unable to access file (associated with Download,

TransferComplete, AutonomousTransferComplete,

DUStateChangeComplete, or AutonomousDUStateChangeComplete

methods).

STATUS_BAD_REQUEST

9017 File transfer failure: unable to complete download (associated with

Download, TransferComplete, AutonomousTransferComplete,

DUStateChangeComplete, or AutonomousDUStateChangeComplete

methods).

STATUS_BAD_REQUEST

9018 File transfer failure: file corrupted or otherwise unusable (associated

with Download, TransferComplete, AutonomousTransferComplete,

DUStateChangeComplete, or AutonomousDUStateChangeComplete

methods).

STATUS_BAD_REQUEST

9022 Invalid UUID Format (associated with DUStateChangeComplete or

AutonomousDUStateChangeComplete methods: Install, Update, and

Uninstall)

STATUS_BAD_REQUEST

9023 Unknown Execution Environment (associated with

DUStateChangeComplete or AutonomousDUStateChangeComplete

methods: Install only)

STATUS_BAD_REQUEST

9024 Disabled Execution Environment (associated with

DUStateChangeComplete or AutonomousDUStateChangeComplete

methods: Install, Update, and Uninstall)

STATUS_BAD_REQUEST

9025 Deployment Unit to Execution Environment Mismatch (associated

with DUStateChangeComplete or

AutonomousDUStateChangeComplete methods: Install and Update)

STATUS_BAD_REQUEST

9026 Duplicate Deployment Unit (associated with

DUStateChangeComplete or AutonomousDUStateChangeComplete

methods: Install only)

STATUS_BAD_REQUEST

9027 System Resources Exceeded (associated with

DUStateChangeComplete or AutonomousDUStateChangeComplete

methods: Install and Update)

STATUS_BAD_REQUEST

9028 Unknown Deployment Unit (associated with

DUStateChangeComplete or AutonomousDUStateChangeComplete

methods: Update and Uninstall)

STATUS_BAD_REQUEST

9029 Invalid Deployment Unit State (associated with

DUStateChangeComplete or AutonomousDUStateChangeComplete

methods: Install, Update and Uninstall)

STATUS_BAD_REQUEST

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TTA, TTC) Page 30 of 42
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Fault code Description Response Status Code

9030 Invalid Deployment Unit Update – Downgrade not permitted

(associated with DUStateChangeComplete or

AutonomousDUStateChangeComplete methods: Update only)

STATUS_BAD_REQUEST

9031 Invalid Deployment Unit Update – Version not specified (associated

with DUStateChangeComplete or

AutonomousDUStateChangeComplete methods: Update only)

STATUS_BAD_REQUEST

9032 Invalid Deployment Unit Update – Version already exists (associated

with DUStateChangeComplete or

AutonomousDUStateChangeComplete methods: Update only)

STATUS_BAD_REQUEST

 584

8.1.5 Retrieve primitive mapping 585

The Retrieve Request and Response primitives shall map to the GetParameterValues RPC. The GetParametersValue 586

RPC is defined in TR-069 [4] as a synchronous RPC and returns a successful response or one of the following fault 587

codes in Table 8.1.5-1. 588

Table 8.1.5-1: GetParameterValues Fault Code Mapping 589

Fault code Description Response Status Code

9001 Request denied (no reason specified) STATUS_BAD_REQUEST

9002 Internal error STATUS_BAD_REQUEST

9003 Invalid arguments STATUS_BAD_REQUEST

9004 Resources exceeded (when used in association with

SetParameterValues, this cannot used to indicate Parameters in

error)

STATUS_BAD_REQUEST

9005 Invalid Parameter name (associated with Set/GetParameterValues,

GetParameterNames, Set/GetParameterAttributes, AddObject, and

DeleteObject)

STATUS_BAD_REQUEST

 590

8.1.6 Notify primitive mapping 591

The NotifyRequest and Response primitives permit notifications to AE or CSEs that have subscribed to a Resource. 592

While TR-069 [4] has the capability to notify the subscribed ACS when an object’s parameter has been modified, TR-593

069 [4] does not have the capability for an ACS to be notified if any parameter within the object has been modified 594

unless the ACS individually subscribes to all the parameters of the object. 595

As such the procedure for mapping the Notify Request and Response primitives for TR-069 [4] is not possible unless 596

the CSE subscribes to receive notification to all the parameters of an Object that are mapped to the Resource’s 597

attributes. 598

Note: In many implementations, subscribing to all the parameters of an Object that are mapped to the Resource 599

can cause performance issues in the CPE as well as the CSE. As such using the attribute based 600

subscription capabilities of TR-069 [4] for subscription of Resources should be avoided when possible. 601

8.1.6.1 Procedure for subscribed Resource attributes. 602

When a <subscription> Resource for a <mgmtObj> Resource is Created, Deleted or Updated the CSE shall map to the 603

SetParameterAttributes RPC in the following manner: 604

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TTA, TTC) Page 31 of 42
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

 TR-069 [4] provides the capability to subscribe to changes of a specific attribute through the use of the 605

SetParameterAttributes RPC using the “Active” value for the Notification parameter. 606

 TR-069 [4] provides the capability to un-subscribe to changes of a specific attribute through the use of the 607

SetParameterAttributes RPC using the “None” value for the Notification parameter. 608

The SetParametersAttributes RPC is defined in TR-069 [4] as a synchronous RPC and returns a successful response or 609

one of the following fault codes in Table 8.1.6.1-1. 610

Table 8.1.6.1-1: SetParameterAttributes Fault Code Mapping 611

Fault code Description Response Status Code

9000 Method not supported STATUS_BAD_REQUEST

9001 Request denied (no reason specified) STATUS_BAD_REQUEST

9002 Internal error STATUS_BAD_REQUEST

9003 Invalid arguments STATUS_BAD_REQUEST

9004 Resources exceeded (when used in association with

SetParameterValues, this cannot be used to indicate Parameters in

error)

STATUS_BAD_REQUEST

9010 File transfer failure (associated with Download, ScheduleDownload,

TransferComplete or AutonomousTransferComplete methods).

STATUS_BAD_REQUEST

 612

8.1.6.2 Notification primitive mapping 613

Notify Request and Response primitives shall map to the TR-069 notification mechanism. CPEs produce notifications 614

for subscribed attributes using the TR-069 Inform method, the Inform method has an argument Event that has as one of 615

the EventCodes with the value “4 VALUE CHANGE” indicating that a subscribed parameter’s value has changed. The 616

parameter(s) that have changed are included ParameterList argument of the Inform method. 617

The ParameterList argument is list of name-value pairs; the name is parameter name and shall be mapped to the 618

objectPath attribute of the Resource while the value is the most recent value of the parameter. 619

Note: TR-069 CPEs do not report value changes of parameters that were modified by the ACS. 620

621

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TTA, TTC) Page 32 of 42
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

 622

8.2 <mgmtCmd> and <execInstance> resource primitive 623

mappings 624

8.2.1 Update (Execute) primitive for the <mgmtCmd> resource 625

When the Update Request primitive for <mgmtCmd> resource addresses the execEnable attribute of the <mgmtCmd> 626

resource, it effectively triggers an Execute <mgmtCmd> procedure.. 627

The Hosting CSE performs command conversion of its <execInstance> sub-resources. The mapping between the 628

<execInstance> attributes and the TR-069 [4] RPC procedures triggered is based on the value of the cmdType attribute 629

of the <mgmtCmd> resource defined in Table 8.2.1-1. The CPE acceptance of the corresponding RPC procedures is 630

indicated by returning a successful Response primitive to the initial Update Request. 631

The Fault Codes which may be returned by the CPE to the Hosting CSE are mapped onto execStatus codes and stored 632

in the corresponding <execInstance> attributes, and are detailed in the following sub-sections 633

Table 8.2.1-1 Mapping of Execute <mgmtCmd> primitives to BBF TR-069 RPC 634

cmdType value BBF TR-069 RPCs

 “DOWNLOAD” Download RPC (see section 8.2.1.1) and TransferComplete

RPC (section 8.2.1.3)

“UPLOAD”

Upload RPC (section 8.2.1.2) and TransferComplete RPC

(section 8.2.1.3)

“SOFTWAREINSTALL” ChangeDUState RPC (section 8.2.1.4) and

ChangeDUStateComplete RPC (section 8.2.1.5)

 “SOFTWAREUNINSTALL” ChangeDUState RPC (section 8.2.1.4) and

ChangeDUStateComplete RPC (section 8.2.1.5)

 “REBOOT” Reboot RPC (section 8.2.1.6)

 “RESET” Factory reset RPC (section 8.2.1.7)

 635

8.2.1.1 Execute File Download 636

The download file transfer operation may use the Download mechanism defined in TR-069 [4]. The Download 637

mechanism is an asynchronous command which returns a successful response or one of the following fault codes 638

mapped onto execStatus values as detailed in Table 8.2.1.1-1. A successful response to the Update primitive triggering 639

the Execute procedure means that the CPE has accepted the Download RPC. 640

Table 8.2.1.1-1: Download Fault Code Mapping 641

Fault
code

Description execStatus Code

9000 Method not supported STATUS_REQUEST_UNSUPPORTED

9001 Request denied (no reason specified) STATUS_REQUEST_DENIED

9002 Internal error STATUS_INTERNAL_ERROR

9003 Invalid arguments STATUS_INVALID_ARGUMENTS

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TTA, TTC) Page 33 of 42
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Fault
code

Description execStatus Code

9004 Resources exceeded (when used in

association with SetParameterValues,

this cannot be used to indicate

Parameters in error)

STATUS_RESOURCES_EXCEEDED

9010 File transfer failure (associated with

Download, ScheduleDownload,

TransferComplete or

AutonomousTransferComplete

methods).

STATUS_FILE_TRANSFER_FAILED

9012 File transfer server authentication

failure (associated with Upload,

Download, TransferComplete,

AutonomousTransferComplete,

DUStateChangeComplete, or

AutonomousDUStateChangeComplete

methods, not associated with

Scheduled Download method).

STATUS_FILE_TRANSFER_SERVER_AUTHEN

TICATION_FAILURE

9013 Unsupported protocol for file transfer

(associated with Upload, Download,

ScheduleDownload,

DUStateChangeComplete, or

AutonomousDUStateChangeComplete

methods).

STATUS_UNSUPPORTED_PROTOCOL

 642

8.2.1.2 Execute File Upload Operations 643

The upload file transfer operation shall use the Upload mechanism defined in TR-069 [4]. The Upload mechanism is an 644

asynchronous command that consists of the synchronous Upload RPC for the Upload and the asynchronous 645

TransferComplete RPC. The Upload RPC returns a successful response or one of the following fault codes mapped 646

onto execStatus values as detailed in Table 8.2.1.2-1. A successful response to the Update primitive triggering the 647

execute procedure means that the CPE has accepted the Upload RPC in Table 8.2.1.2-1. 648

Table 8.2.1.2-1: Upload Fault Code Mapping 649

Fault
code

Description execStatus Code

9000 Method not supported STATUS_REQUEST_UNSUPPORTED

9001 Request denied (no reason specified) STATUS_REQUEST DENIED

9002 Internal error STATUS_INTERNAL_ERROR

9003 Invalid arguments STATUS_INVALID_ARGUMENTS

9004 Resources exceeded (when used in

association with SetParameterValues,

this cannot be used to indicate

Parameters in error)

STATUS_RESOURCES_EXCEEDED

9011 Upload failure (associated with

Upload, TransferComplete or

AutonomousTransferComplete

methods).

STATUS_UPLOAD_FAILED

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TTA, TTC) Page 34 of 42
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Fault
code

Description execStatus Code

9012 File transfer server authentication

failure (associated with Upload,

Download, TransferComplete,

AutonomousTransferComplete,

DUStateChangeComplete, or

AutonomousDUStateChangeComplete

methods).

STATUS_FILE_TRANSFER_SERVER_AUTHEN

TICATION_FAILURE

9013 Unsupported protocol for file transfer

(associated with Upload, Download,

ScheduleDownload,

DUStateChangeComplete, or

AutonomousDUStateChangeComplete

methods).

STATUS_UNSUPPORTED_PROTOCOL

 650

8.2.1.3 Report Results using TransferComplete RPC 651

After a File Download or Upload has been attempted, the result of the operation is reported using the TransferComplete 652

RPC. The TransferComplete RPC indicates a successful operation or one of the following fault codes mapped onto 653

execStatus values in Table 8.2.1.3-2. 654

 655

Table 8.2.1.3-2: TransferComplete Fault Code Mapping 656

Fault code Description execStatus Code

9001 Request denied (no reason specified) STATUS_REQUEST

DENIED

9002 Internal error STATUS_INTERNAL_ER

ROR

9010 File transfer failure (associated with Download, ScheduleDownload,

TransferComplete or AutonomousTransferComplete methods).

STATUS_FILE_TRANSFE

R_FAILED

9011 Upload failure (associated with Upload, TransferComplete or

AutonomousTransferComplete methods).

STATUS_UPLOAD_FAIL

ED

9012 File transfer server authentication failure (associated with Upload,

Download, TransferComplete, AutonomousTransferComplete,

DUStateChangeComplete, or AutonomousDUStateChangeComplete

methods).

STATUS_FILE_TRANSFE

R_SERVER_AUTHENTIC

ATION_FAILURE

9014 File transfer failure: unable to join multicast group (associated with

Download, TransferComplete or AutonomousTransferComplete

methods).

STATUS_FILE_TRANSFE

R_FAILED_MULTICAST

_GROUP_UNABLE_JOIN

9015 File transfer failure: unable to contact file server (associated with

Download, TransferComplete, AutonomousTransferComplete,

DUStateChangeComplete, or AutonomousDUStateChangeComplete

methods).

STATUS_FILE_TRANSFE

R_FAILED_SERVER_CO

NTACT_FAILED

9016 File transfer failure: unable to access file (associated with Download,

TransferComplete, AutonomousTransferComplete,

DUStateChangeComplete, or AutonomousDUStateChangeComplete

methods).

STATUS_FILE_TRANSFE

R_FAILED_FILE_ACCES

S_FAILED

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TTA, TTC) Page 35 of 42
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Fault code Description execStatus Code

9017 File transfer failure: unable to complete download (associated with

Download, TransferComplete, AutonomousTransferComplete,

DUStateChangeComplete, or AutonomousDUStateChangeComplete

methods).

STATUS_FILE_TRANSFE

R_FAILED_DOWNLOAD

_INCOMPLETE

9018 File transfer failure: file corrupted or otherwise unusable (associated

with Download, TransferComplete, AutonomousTransferComplete,

DUStateChangeComplete, or AutonomousDUStateChangeComplete

methods).

STATUS_FILE_TRANSFE

R_FAILED_FILE_CORRU

PTED

9019 File transfer failure: file authentication failure (associated with

Download, TransferComplete or AutonomousTransferComplete

methods).

STATUS_FILE_TRANSFE

R_FILE_AUTHENTICATI

ON_FAILURE

9020 File transfer failure: unable to complete download within specified

time windows (associated with TransferComplete method).

STATUS_FILE_TRANSFE

R_WINDOW_EXCEEDED

 657

8.2.1.4 Execute Software Operations with ChangeDUState RPC 658

The software installation and uninstall operations shall use the ChangeDUState mechanism defined in TR-069 [4]. The 659

ChangeDUState mechanism is an asynchronous command that consists of the synchronous ChangeDUState RPC and 660

returns a successful response or one of the fault codes mapped onto execStatus values as detailed in Table 8.2.1.4.-1. A 661

successful response to the Update primitive triggering the Execute procedure means that the CPE has accepted the 662

ChangeDUState RPC. 663

Table 8.2.1.4-1: ChangeDUState Fault Code Mapping 664

Fault code Description execStatus Code

9000 Method not supported STATUS_REQUEST_UNS

UPPORTED

9001 Request denied (no reason specified) STATUS_REQUEST

DENIED

9002 Internal error STATUS_INTERNAL_ER

ROR

9004 Resources exceeded (when used in association with

SetParameterValues, this cannot be used to indicate Parameters in

error)

STATUS_RESOURCES_E

XCEEDED

 665

8.2.1.5 Report Results with ChangeDUStateComplete RPC 666

After software installation and uninstall operations using a ChangeDUState mechanism as defined in TR-069 [4], the 667

result of the state change operation is retrieved using the ChangeDUStateComplete RPC. The ChangeDUStateComplete 668

RPC indicates a successful operation or one of the fault codes mapped onto execStatus values as detailed in Table 669

8.2.1.5.-1. 670

Table 8.2.1.5-1: ChangeDUStateComplete Fault Code Mapping 671

Fault code Description execStatus Code

9001 Request denied (no reason specified) STATUS_REQUEST_DEN

IED

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TTA, TTC) Page 36 of 42
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Fault code Description execStatus Code

9003 Invalid arguments STATUS_INVALID_ARG

UMENTS

9012 File transfer server authentication failure (associated with Upload,

Download, TransferComplete, AutonomousTransferComplete,

DUStateChangeComplete, or AutonomousDUStateChangeComplete

methods).

STATUS_FILE_TRANSFE

R_SERVER_AUTHENTIC

ATION_FAILURE

9013 Unsupported protocol for file transfer (associated with Upload,

Download, ScheduleDownload, DUStateChangeComplete, or

AutonomousDUStateChangeComplete methods).

STATUS_UNSUPPORTE

D_PROTOCOL

9015 File transfer failure: unable to contact file server (associated with

Download, TransferComplete, AutonomousTransferComplete,

DUStateChangeComplete, or AutonomousDUStateChangeComplete

methods).

STATUS_FILE_TRANSFE

R_FAILED_SERVER_CO

NTACT_FAILED

9016 File transfer failure: unable to access file (associated with Download,

TransferComplete, AutonomousTransferComplete,

DUStateChangeComplete, or AutonomousDUStateChangeComplete

methods).

STATUS_FILE_TRANSFE

R_FAILED_FILE_ACCES

S_FAILED

9017 File transfer failure: unable to complete download (associated with

Download, TransferComplete, AutonomousTransferComplete,

DUStateChangeComplete, or AutonomousDUStateChangeComplete

methods).

STATUS_FILE_TRANSFE

R_FAILED_DOWNLOAD

_INCOMPLETE

9018 File transfer failure: file corrupted or otherwise unusable (associated

with Download, TransferComplete, AutonomousTransferComplete,

DUStateChangeComplete, or AutonomousDUStateChangeComplete

methods).

STATUS_FILE_TRANSFE

R_FAILED_FILE_CORRU

PTED

9022 Invalid UUID Format (associated with DUStateChangeComplete or

AutonomousDUStateChangeComplete methods: Install, Update, and

Uninstall)

STATUS_INVALID_UUI

D_FORMAT

9023 Unknown Execution Environment (associated with

DUStateChangeComplete or AutonomousDUStateChangeComplete

methods: Install only)

STATUS_UNKNOWN_EX

ECUTION_ENVIRONME

NT

9024 Disabled Execution Environment (associated with

DUStateChangeComplete or AutonomousDUStateChangeComplete

methods: Install, Update, and Uninstall)

STATUS_DISABLED_EX

ECUTION_ENVIRONME

NT

9025 Deployment Unit to Execution Environment Mismatch (associated

with DUStateChangeComplete or

AutonomousDUStateChangeComplete methods: Install and Update)

STATUS_EXECUTION_E

NVIRONMENT_MISMAT

CH

9026 Duplicate Deployment Unit (associated with

DUStateChangeComplete or AutonomousDUStateChangeComplete

methods: Install only)

STATUS_DUPLICATE_D

EPLOYMENT_UNIT

9027 System Resources Exceeded (associated with

DUStateChangeComplete or AutonomousDUStateChangeComplete

methods: Install and Update)

STATUS_SYSTEM_RESO

URCES_EXCEEDED

9028 Unknown Deployment Unit (associated with

DUStateChangeComplete or AutonomousDUStateChangeComplete

methods: Update and Uninstall)

STATUS_UNKNOWN_DE

PLOYMENT_UNIT

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TTA, TTC) Page 37 of 42
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Fault code Description execStatus Code

9029 Invalid Deployment Unit State (associated with

DUStateChangeComplete or AutonomousDUStateChangeComplete

methods: Install, Update and Uninstall)

STATUS_INVALID_DEP

LOYMENT_UNIT_STATE

9030 Invalid Deployment Unit Update – Downgrade not permitted

(associated with DUStateChangeComplete or

AutonomousDUStateChangeComplete methods: Update only)

STATUS_INVALID_DEP

LOYMENT_UNIT_UPDA

TE_DOWNGRADE_DISA

LLOWED

9031 Invalid Deployment Unit Update – Version not specified (associated

with DUStateChangeComplete or

AutonomousDUStateChangeComplete methods: Update only)

STATUS_INVALID_DEP

LOYMENT_UNIT_UPDA

TE_UPGRADE_DISALLO

WED

9032 Invalid Deployment Unit Update – Version already exists (associated

with DUStateChangeComplete or

AutonomousDUStateChangeComplete methods: Update only)

STATUS_INVALID_DEP

LOYMENT_UNIT_UPDA

TE_VERSION_EXISTS

 672

8.2.1.6 Execute Reboot operation 673

The reboot operation shall use the Reboot RPC defined in TR-069 [4]. The Reboot RPC is a synchronous command. 674

A successful response to the Update primitive triggering the Execute procedure means that the CPE has accepted the 675

Reboot RPC. The Reboot RPC returns a successful response or one of the fault codes mapped onto execStatus values as 676

detailed in Table 8.2.1.6-1. 677

Table 8.2.1.6-1: Reboot Fault Code Mapping 678

Fault code Description execStatus Code

9001 Request denied (no reason specified) STATUS_REQUEST_DEN

IED

9002 Internal error STATUS_INTERNAL_ER

ROR

9003 Invalid arguments STATUS_INVALID_ARG

UMENTS

 679

8.2.1.7 Execute Factory Reset operation 680

The factory reset operation shall use the FactoryReset RPC defined in TR-069 [4]. The FactoryReset RPC is a 681

synchronous command. A successful response to the Update primitive triggering the Execute procedure means that the 682

CPE has accepted the FactoryReset RPC. The FactoryReset RPC returns a successful response or one of the fault codes 683

mapped onto execStatus values as detailed in Table 8.2.1.7-1. 684

Table 8.2.1.7-1: FactoryReset Fault Code Mapping 685

Fault code Description execStatus Code

9000 Method not supported STATUS_REQUEST_UNS

UPPORTED

9001 Request denied (no reason specified) STATUS_REQUEST_DEN

IED

9002 Internal error STATUS_INTERNAL_ER

ROR

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TTA, TTC) Page 38 of 42
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Fault code Description execStatus Code

9003 Invalid arguments STATUS_INVALID_ARG

UMENTS

 686

8.2.2 Delete <mgmtCmd> resource primitive mapping 687

 The Delete Request primitive for the <mgmtCmd> resource may initiate TR-069 [4] RPC commands for the 688

corresponding <execInstance> sub-resources as follows: 689

 If there are no <execInstance> sub-resources with RUNNING execStatus, a successful response to the Delete 690

primitive is returned and the <mgmtCmd> resource is deleted without triggering any TR-069 [4] RPCs. 691

 If there are <execInstance> sub-resources with RUNNING execStatus that resulted in cancellable TR-069 [4] 692

RPCs (e.g. File Upload and File Download RPCs), a TR-069[4] CancelTransfer RPC shall be initiated for 693

each cancellable operation. Upon completion of all the cancellation operations, if any fault codes are returned 694

by the CPE, an unsuccessful Response to the Delete primitive with status code “Delete mgmtCmd- 695

execInstance cancellation error” is returned, and the <mgmtCmd> resource is not deleted. The execStatus 696

attribute of each specific <execInstance> is set to CANCELLED for successful RPCs or is determined from 697

the RPC fault codes as detailed in Table 8.2.2-1. If all cancellation operations are successful on the managed 698

entity, a successful Response to the Delete primitive is returned and the <mgmtCmd> resource is deleted. 699

 If there is at least one <execInstance> sub-resource with RUNNING execStatus that resulted in non-700

cancellable TR-069 [4] RPCs (e.g. RPCs other than File Upload and File Download RPCs), the execStatus 701

attribute of the specific <execInstance> is changed to STATUS_NON_CANCELLABLE. An unsuccessful 702

Response to the Delete primitive with status code “Delete mgmtCmd- execInstance cancellation error” is 703

returned and the <mgmtCmd> resource is not deleted. 704

Table 8.2.2-1: CancelTransfer Fault Code Mapping for Delete <mgmtCmd> 705

Fault code Description Response Status Code

9000 Method not supported STATUS_REQUEST_UNS

UPPORTED

9001 Request denied (no reason specified) STATUS_REQUEST

DENIED

9021 Cancelation of file transfer not permitted in current transfer state STATUS_CANCELLATIO

N_DENIED

 706

8.2.3 Update (Cancel) <execInstance> primitive mapping 707

When the Update Request primitive for an <execInstance> sub-resource addresses the execDisable attribute of the 708

<execInstance > sub-resource, it effectively triggers a Cancel <execInstance> resource procedure. 709

The hosting CSE determines weather the <execInstance> resource has a RUNNING execStatus and weather the 710

resulting TR-069 [4] RPCs are cancellable. Currently, only the TR-069 File Upload and File Download RPCs are 711

cancellable using the TR-069 [4] CancelTransfer RPC. 712

 If the addressed <execInstance> sub-resource has an execStatus other than RUNNING, an un-successful 713

Response to the Update primitive is returned with status code “Cancel execInstance – already complete”. 714

 If the addressed <execInstance> sub-resources has RUNNING execStatus and resulted in cancellable TR-069 715

[4] RPCs (e.g. File Upload and File Download RPCs), a BBF TR-069 [4] CancelTransfer RPC shall be 716

initiated. For a successful CancelTransfer RPC the execStatus attribute of the specific <execInstance> is set to 717

CANCELLED and a successful Response is sent to the Update primitive. For an unsuccessful CancelTransfer 718

RPC the execStatus attribute is determined from the RPC fault codes as detailed in Table 8.2.3-1 and an 719

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TTA, TTC) Page 39 of 42
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

unsuccessful Response is sent to the Update primitive with status code “Cancel execInstance – cancellation 720

error”. 721

 If the addressed <execInstance> sub-resources has RUNNING execStatus and resulted non-cancellable TR-722

069 [4] RPCs (e.g. RPCs other than File Upload and File Download RPCs), the execStatus attribute of the 723

specific <execInstance> is changed to STATUS_NON_CANCELLABLE. An unsuccessful Response is sent 724

to the Update primitive with status code “Cancel execInstance – not cancellable” 725

. 726

Table 8.2.3-1: CancelTransfer Fault Code Mapping for Update (Cancel) <execInstance> 727

Fault code Description execStatus Code

9000 Method not supported STATUS_REQUEST_UNS

UPPORTED

9001 Request denied (no reason specified) STATUS_REQUEST

DENIED

9021 Cancelation of file transfer not permitted in current transfer state STATUS_REQUEST_UNS

UPPORTED

 728

 729

8.2.4 Delete <execInstance> primitive mapping 730

The Delete Request primitive for an <execInstance> sub-resource may initiate TR-069 [4] RPC commands for the 731

corresponding <execInstance> sub-resources as follows: 732

 If the addressed <execInstance> sub-resource has an execStatus other than RUNNING, an successful 733

Response to the Delete primitive is returned and the <execInstance> sub-resource is deleted without triggering 734

any TR-069 [4] RPCs. 735

 If the addressed <execInstance> sub-resource has RUNNING execStatus and resulted in cancellable TR-069 736

[4] RPCs (e.g. File Upload and File Download RPCs), a BBF TR-069 [4] CancelTransfer RPC shall be 737

initiated. For a successful CancelTransfer RPC a successful response is sent to the Delete primitive and the 738

<execInstance> sub-resource is deleted. For an unsuccessful CancelTransfer RPC the execStatus attribute is 739

determined from the RPC fault codes as detailed in Table 8.2.4-1 and an unsuccessful Response is sent to the 740

Delete primitive with status code “Delete execInstance – cancellation failed”. 741

 If the addressed <execInstance> sub-resource has RUNNING execStatus and resulted non-cancellable TR-069 742

[4] RPCs (e.g. RPCs other than File Upload and File Download RPCs), the execStatus attribute is set to 743

STATUS_NOT_CANCELLABLE and an unsuccessful Response is sent to the Update primitive with status 744

code “Delete execInstance – not cancellable” 745

 746

Table 8.2.4-1: CancelTransfer Fault Code Mapping for Delete <execInstance> 747

Fault code Description execStatus Code

9000 Method not supported STATUS_REQUEST_UNS

UPPORTED

9001 Request denied (no reason specified) STATUS_REQUEST

DENIED

9021 Cancelation of file transfer not permitted in current transfer state STATUS_CANCELLATIO

N_DENIED

 748

749

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TTA, TTC) Page 40 of 42
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

 750

9 Server Interactions 751

This clause specifies how the IN-CSE interacts with an ACS in order to manage the Resources described in this 752

specification. The IN-CSE interaction with an ACS includes: 753

 Establishment of the communication session between the IN-CSE and ACS 754

 Processing of requests and notifications between the IN-CSE and the ACS 755

 Discovery 756

Note: The Broadband Forum has not defined a protocol specification for the Northbound Interface of an ACS. As such, 757

this document only describes the expectations of this interface in the form of requirements on the ACS. 758

9.1 Communication Session Establishment 759

9.1.1 IN-CSE to ACS Communication Session Establishment 760

When the IN-CSE detects that it has to delegate an interaction with a device resource to an ACS, the IN-CSE 761

establishes a communication session with the ACS. The establishment of a communication session between the IN-CSE 762

and ACS provides security dimensions for Access control, Authentication, Non-repudiation, Data confidentiality, 763

Communication security, Data integrity and Privacy adhering to the following TR-131 [7] Architectural requirement 764

A7. 765

The IN-CSE may establish multiple sessions with an ACS based on the security model utilized between the IN-CSE and 766

the ACS. 767

9.1.2 ACS to IN-CSE Communication Session Establishment 768

When the ACS detects a change to resources it manages that the IN-CSE has expressed interest, the ACS requests the 769

IN-CSE to establish a session if a session doesn’t exist for the resource being managed. The establishment of a 770

communication session between the IN-CSE and ACS provides security dimensions for Access control, 771

Authentication, Non-repudiation, Data confidentiality, Communication security, Data integrity and Privacy adhering to 772

the following TR-131 [7] Architectural requirement A7. 773

The ACS may establish multiple sessions with an IN-CSE based on the security model utilized between the IN-CSE and 774

the ACS. 775

While a session between the ACS and IN-CSE is not established, the AS retains any notifications or changes in the 776

resources based on an Event retention policy (i.e., time, number of events). 777

When an ACS to IN-CSE interaction is required and a session does not exist, the ACS requests to initiate a session 778

based on a Session Initiation Policy (i.e., Periodic contact establishment (schedule), upon event detection with 779

timeframe window). 780

9.2.3 ACS and IN-CSE Communication Session Requirements 781

When establishing a session from the ACS to the IN-CSE: 782

 If a session doesn’t exist between the IN-CSE and ACS, the ACS shall retain any notifications or changes in the 783

resources based on an Event retention policy (i.e., time, number of events). 784

 When an ACS to IN-CSE interaction is required and a session does not exist, the ACS shall be capable to initiate 785

a session based on a Session Initiation Policy (i.e., Periodic contact establishment (schedule), upon event 786

detection with timeframe window) 787

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TTA, TTC) Page 41 of 42
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

9.2 Processing of Requests and Responses 788

9.2.1 Request and Notification Formatting 789

Requests and Notifications mechanisms between the IN-CSE and the DM Server format the XML schema of the CPE 790

methods defined in TR-069 [4] as an ACS would format the CPE methods that it would pass to the CPE. The IN-CSE 791

would then also process the CPE methods as defined in TR-069 [4]. Likewise the ACS would send notifications in the 792

format of the XML schema of the CPE for sending events using the Inform RPC. 793

9.2.2 ACS Request Processing Requirements 794

When receiving requests from the IN-CSE the ACS shall be capable of defining mechanisms to support triggering of 795

immediate operations to device. If the device is not available the ACS returns an appropriate error code. 796

The ACS shall provide capability for the IN-CSE to indicate request policies to include: Retry policy, Request Time 797

out. 798

9.2.3 ACS Notification Processing Requirements 799

When sending notifications to the IN-CSE: 800

 The ACS shall be capable of providing a mechanism for the IN-CSE to subscribe to events. 801

 The ACS shall be capable of providing a list of events for which the IN-CSE can subscribe. 802

 The ACS shall be capable of providing a mechanism for the IN-CSE to unsubscribe from events. 803

 The ACS shall be capable of providing an event delivery mechanism. 804

 The ACS shall be capable of providing the capability for the IN-CSE to request event filters including: Event 805

Code; Specific parameters changing value; Device; Any combination of the previous criteria. 806

 The IN-CSE shall be capable of subscribing to be notified of changes to resources it manages. 807

 The ACS shall be capable of notifying the IN-CSE of changes to resources to which the client has subscribed. 808

9.3 Discovery and Synchronization of Resources 809

For devices under management, the IN-CSE may discover resources of interest (metadata and values) within a device 810

using the ACS. 811

For resources of interest, the IN-CSE may also express an interest to be notified of a resource if a resource is changed 812

(added, deleted, updated). 813

The IN-CSE shall be capable to discover and subscribe to changes of resources in order to synchronize the IN-CSE with 814

resources of interest of the ACS. 815

9.4 Access Management 816

Once a request has performed an Access Decision by the IN-CSE to allow the request, the IN-CSE shall select the 817

appropriate ACS along with elements the ACS would need to implement access management within the ACS. These 818

would include the Identity of the subject (oneM2M Originator) of the request which is needed in scenarios where the 819

original issuer of the request is needed to be known – this could be done by correlating principals (e.g., Roles, 820

Accounts) used by the IN-CSE and ACS. 821

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TTA, TTC) Page 42 of 42
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

9.4.1 Access Management Requirements 822

 The ACS shall be capable of providing a mechanism for the IN-CSE to discover the Access Management 823

elements used to authorize and authenticate access to resources controlled by the ACS. 824

 The IN-CSE shall be capable of correlating Access Management elements provided by the ACS to Access 825

Management elements used by the IN-CSE. 826

 The IN-CSE shall be capable of providing secured storage of Access Management elements within the IN-CSE. 827

 828

10 New Management Technology Specific Resources 829

TR-181 [6] provides a list of management objects that have been standardized by the Broadband Forum and where 830

possible, clause 7 provides a mapping of the Resources to standardized management objects. This clause provides the 831

oneM2M vendor specific extensions to the TR-181 [6] data model as specified in the ts-0006-1-1.xml. 832

History 833

Publication history

V1.0.1 30 Jan 2015 Release 1 - Publication

 834

 835

 836

 837

