

INTRODUCTION TO ONEM2M ONEM2M FEATURES, EVOLUTION, APP TO SMART CITY

Presenter: Omar Elloumi, oneM2M TP Chair, Nokia Bell-Labs and CTO group omar.elloumi@nokia.com

oneM2M www.oneM2M.org

tsdsi oneM2M Partnership Project

A software "framework"

Located between the M2M applications and communication HW/SW that provide connectivity

Provides functions that M2M applications across different industry segments commonly need (eg. data transport, security/encryption, remote software update...)

Like an "Android" for the Internet of Things But it sits both on the field devices/sensors and in servers And it is a standard – not controlled by a single private company

tsds Strong implementation base

Industry-driven Open source implementations

4 interop. events so far

tsdsi oneM2M Architecture approach

tsdsi Nearly 40% of economic impact requires interoperability between IoT systems

Nearly 40 percent of economic impact requires interoperability between IoT systems

Potential economic impact of IoT ¹	Value potential requiring interoperability \$ trillion		% of total value	Examples of how interoperability enhances value
\$11.1 trillion	Factories	1.3	36	Data from different types of equipment used to improve line efficiency
38%	Cities 0.7		43	Video, cellphone data, and vehicle sensors to monitor traffic and optimize flow
	Retail 0.7		57	Payment and item detection system linked for automatic checkout
62%	Work sites 0.5		56	Linking worker and machinery location data to avoid accidents, exposure to chemicals
	Vehicles 0.4		44	Equipment usage data for insurance underwriting, maintenance, pre-sales analytics
	Agriculture 0.3		20	Multiple sensor systems used to improve farm management
	Outside 0.3		29	Connected navigation between vehicles and between vehicles and GPS/traffic control
	Home 0.1		17	Linking chore automation to security and energy system to time usage
	Offices 0 ²		30	Data from different building systems and other buildings used to improve security

1 Includes sized applications only; includes consumer surplus.

2 Less than \$100 billion.

NOTE: Numbers may not sum due to rounding.

SOURCE: Expert interviews; McKinsey Global Institute analysis

© 2017 oneM2M

Source: McKinsey

Nokia Internal Use

Summary of Release 2/3 Features

Industrial Domain Enablement

- Time series data management
- Atomic Transactions
- Action Triggering
- Optimized Group Operations

Management

tsdsi

• M2M Application & Field Domain Component Configuration

Semantics

- Semantic Description/Annotation
- Semantic Querying
- Semantic Mashups
- oneM2M Base Ontology

Security

- Dynamic Authorization
- End to End Security
- Enrollment & Authentication APIs
- Distributed Authorization
- Decentralized Authentication
- Interoperable Privacy Profiles © 2017 oneM2M
- Secure Environment Abstraction

Home Domain Enablement

oneM2M

Rel-2/3

Features

- Home Appliance Information Models & SDT
- Mapping to existing standards (OCF, ECHONET, GoTAPI...)

Smart City & Automotive Enablement

- Service Continuity
- Cross resource subscriptions

Market Adoption

- Developer Guides
- oneM2M Conformance Test
- Feature Catalogues
- Product Profiles

oneM2M as generic interworking framework

- 3GPP SCEF
- OMA LWM2M
- DDS
- OPC-UA
- Modbus
- AllJoyn/OCF
- OSGi
- W3C WoT

tsdsi Nobody can do it alone

- one **V** M
- Collaboration is important to reach common understanding, avoid overlap and build interoperable IoT ecosystems globally.

How well we do? Source Gartner

WHY ONEM2M? WHY NOW?

Why oneM2M? Why now?

- M2M (and IoT) communications existed for so many years, e.g.:
 - SCADA systems
 - Satellite based truck tracking
- So why oneM2M?
 - <u>Specific standards exist</u> for home automation, smart factory, energy management, etc. but much larger growth will come from a fully integrated Internet of Things
 - The IoT vision will not materialize if we do not solve interoperability issues, therefore drive down integration costs and ensure time to market
- Why now?
 - Technology is ready for an <u>outcome based economy</u> for a large number of use cases, more than what one can think of

Technology 1: connectivity, plenty to chose from

Source AIOTI, modified from an ALU contribution

tsdsi Technology 2: horizontalization «building IoT in Siloes belongs to the past »

NICHE VERTICALS Low volumes, high ARPC, high TCO

- Devices and Applications are designed as "stove-pipes"
- Devices dedicated for single application use
- Solutions are closed and not scalable: duplication of dedicated infrastructure
- High development & delivery cost

BROAD ADOPTION High volume, low ARPC, low TCO

- Devices and Applications are designed to collaborate across "clouds"
- Devices are used for multiple application purposes
- Devices and Applications offering continuously evolve
- Easy app development and device integra-tion through APIs and standard interfaces

Source: Alcatel-Lucent

tsdsi Technology 3: "softwarization" and IoT virtualization

Source: ITU-T Focus Group IMT2020

Source: sensinov

EXAMPLE : ROLE OF ONEM2M IN SMART CITIES

Key findings/trends «City 2.0»

- Smart city platforms bring significant efficiencies when the number of applications grows
 - Shared data
 - Single API set and data formats are beneficial for developers
- Initial cost of platform investment tends to be marginal compared to economies of scale, OPEX options can alleviate initial costs
- Connectivity, plenty to chose from
- Machine learning and analytics create great benefits (e.g. traffic management, parking management)
- Living labs for research and innovation
- Open standards are crucial for sustainable success

Source: Based on discussions with Dr. Martin Serrano, OASC and Insight centre

Key requirements for smart city IoT platform

tsdsi

Horizontal platform <u>for new</u> <u>deployments</u>	 Smart city is an incremental and participatory journey New deployments should, where possible, leverage a converged networks and an horizontal service platform Open standards are key to avoid lock-in and master the total cost of ownership
<u>Existing</u> deployments	 Do not disrupt existing "vertical deployment" but seek opportunities for an integration path with an horizontal approach Build value through mash-ups and open data
<u>Participatory</u> and <u>innovative</u> approach	 Surveys Address needs for innovation through app development: APIs Access to, eventually semantically enriched, Open data (where feasible and subject to privacy legislation/citizen consent)
<u>Security</u> and (device) <u>management</u> are key	 Despite initial focus on IoT data, there is an increased interest in security and device management (which go hand in hand). Need arises from security threat analysis conducted recently: e.g. "Two researchers analyzed smart meters widely used in Spain and discovered that those can be hacked by attackers to harm the overall National power network.", source: http://securityaffairs.co/wordpress/29353/security/smart-meters-hacking.html

Combat fragmentation	 Healthy eco-system with economies of scale More partnering choices and opportunities for M2M/IOT industry stakeholders
Lower CAPEX	 Standardized protocols / APIs -> simplifies application development/deployment Cross-vertical standards -> same devices and back-ends in different industries
Lower OPEX	 Standard features to use networks more efficiently -> get better tariffs Flexibility for verticals -> utilize best transport network meeting business needs
Time to Market	Reduced development, test and deployment lifecycles through focusing on core business (application logic)