
-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 1 of 54
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

ONEM2M

TECHNICAL SPECIFICATION
Document Number TS-0030-V-3.0.2

Document Name: Ontology based Interworking

Date: 2019-04-18

Abstract: The present document specifies Generinc Interworking of the

oneM2M System with external systems (e.g. Area Networks

containing non-oneM2M devices) that can be described with
ontologies that are compliant with oneM2M's Base Ontology in TS-
0012.

Template Version: 08 September 2015 (Do not modify)

This Specification is provided for future development work within oneM2M only. The Partners accept no

liability for any use of this Specification.

The present document has not been subject to any approval process by the oneM2M Partners Type 1.

Published oneM2M specifications and reports for implementation should be obtained via the oneM2M

Partners' Publications Offices.

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 2 of 54
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

About oneM2M

The purpose and goal of oneM2M is to develop technical specifications which address the

need for a common M2M Service Layer that can be readily embedded within various

hardware and software, and relied upon to connect the myriad of devices in the field with

M2M application servers worldwide.

More information about oneM2M may be found at: http//www.oneM2M.org

Copyright Notification

© 2019, oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSTDI, TTA, TTC).

All rights reserved.

The copyright extends to reproduction in all media.

Notice of Disclaimer & Limitation of Liability

The information provided in this document is directed solely to professionals who have the

appropriate degree of experience to understand and interpret its contents in accordance with

generally accepted engineering or other professional standards and applicable regulations.

No recommendation as to products or vendors is made or should be implied.

NO REPRESENTATION OR WARRANTY IS MADE THAT THE INFORMATION IS

TECHNICALLY ACCURATE OR SUFFICIENT OR CONFORMS TO ANY STATUTE,

GOVERNMENTAL RULE OR REGULATION, AND FURTHER, NO

REPRESENTATION OR WARRANTY IS MADE OF MERCHANTABILITY OR

FITNESS FOR ANY PARTICULAR PURPOSE OR AGAINST INFRINGEMENT OF

INTELLECTUAL PROPERTY RIGHTS. NO oneM2M PARTNER TYPE 1 SHALL BE

LIABLE, BEYOND THE AMOUNT OF ANY SUM RECEIVED IN PAYMENT BY

THAT PARTNER FOR THIS DOCUMENT, WITH RESPECT TO ANY CLAIM, AND IN

NO EVENT SHALL oneM2M BE LIABLE FOR LOST PROFITS OR OTHER

INCIDENTAL OR CONSEQUENTIAL DAMAGES. oneM2M EXPRESSLY ADVISES

ANY AND ALL USE OF OR RELIANCE UPON THIS INFORMATION PROVIDED IN

THIS DOCUMENT IS AT THE RISK OF THE USER.

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 3 of 54
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Contents

1 Scope .. 5

2 References .. 5
2.1 Normative references ... 5
2.2 Informative references ... 5

3 Definitions and abbreviations ... 6
3.1 Definitions ... 6
3.2 Abbreviations ... 6

4 Conventions .. 6

5 Introduction to Ontology based Interworking (informative) .. 7
5.1 Basic concepts of Ontology based Interworking ... 7
5.1.1 Ontology based Interworking vs. Specific interworking .. 7
5.1.2 Use of ontologies for Ontology based Interworking with Area Networks ... 7
5.2 Using Ontology based Interworking with Device Abstraction .. 8
5.2.1 General description .. 8
5.2.2 An example, involving ZigBee, HAIM and SAREF .. 8
5.3 Priciples of data flows.. 9
5.3.1 Preconditions on the communicating entity ... 9
5.3.2 Data flows for communicating with the IPE using DataPoints of a Service .. 10
5.3.3 Data flows for communicating with the IPE using Operations of a Service .. 12

6 Functional specification of communication with the Ontology based Interworking IPE 14
6.1 oneM2M resources for IPE communication .. 14
6.1.1 General design principles ... 14
6.1.2 Resource structure for modelling devices, sub-devices, services and operations 14
6.2 Specification of the IPE for Ontology based Interworking .. 19
6.2.1 Initialization of the Ontology based Interworking IPEOntology based Interworking 19
6.2.1.1 General functionality of a Ontology based Interworking IPE .. 19
6.2.1.2 Initialization sequence of a Ontology based Interworking IPE .. 20
6.2.2 Interworked Device and Service discovery .. 20
6.2.2.1 General handling of Interworked Device discovery ... 20
6.2.2.2 Creation of resources for the Proxied Device ... 21
6.2.2.2.1 General on the creation of resources for the Proxied Device by the IPE .. 21
6.2.2.2.2 Creation of resources for the Proxied Device when Interworked Devices are represented as

<flexContainer>s .. 21
6.2.2.2.3 Creation of resources for the Proxied Device when Interworked Devices are represented as

<AE>s... 22
6.2.2.3 Creation of resources for sub-devices ... 22
6.2.2.4 Creation of resources for Services .. 23
6.2.2.5 Creation of resources for operations of a service of a device ... 24
6.2.2.5.1 Introduction ... 24
6.2.2.5.2 Creation of resources for operation invocation ... 24
6.2.2.5.3 Creation of resources for returning operation results .. 25
6.2.2.6 Subscription to the created resources ... 26
6.2.3 Handling of DataPoints by the IPE .. 26
6.2.4 Handling of Operations by the IPE .. 27
6.2.5 Removing of resources for Proxied Devices .. 27

7 Rules for creation of XSDs from ontologies .. 28
7.1 General information ... 28
7.2 XSD creation rules ... 28
7.2.1 General rules .. 28
7.2.1.1 General principle for creating XSDs .. 28
7.2.1.2 Parameters for XSD templates.. 28
7.2.1.3 Data typing for Variables ... 32
7.2.1.3.1 Information on datatypes contained in the ontology ... 32
7.2.1.3.2 Construction of Simple Data Types .. 33

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 4 of 54
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

7.2.1.3.3 List Data Types ... 34
7.2.1.3.4 Structured Data Types ... 35
7.2.2 XSD template for sub-classes of Base Ontology class: Device ... 35
7.2.3 XSD template for sub-classes of Base Ontology class: Service ... 38
7.2.4 XSD template for sub-classes of Base Ontology class: Operation ... 41

Annex A (informative): Example for ontology based interworking .. 44

A.1 Overview .. 44

A.2 XSDs created by the IPE .. 46
A.2.1 XSD storage <container> .. 46
A.2.2 XSD for the Interworked Device type XYZ_Cool .. 46
A.2.3 XSD for the Service type SwitchOnService .. 48
A.2.4 XSD for the Service type MonitorService ... 50
A.2.5 XSD for the Operation type ToggleBinary .. 52

History .. 54

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 5 of 54
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

1 Scope

The present document specifies Generinc Interworking of the oneM2M System with external systems (e.g. Area

Networks containing non-oneM2M devices) that can be described with ontologies that are compliant with oneM2M's

Base Ontology, specified in oneM2M TS-0012 [3].

In oneM2M Release 2 the specification for Ontology based Interworking had been contained in clauses 8 and 9 of

oneM2M TS-0012-v2.2.0 [4].

2 References

2.1 Normative references

References are either specific (identified by date of publication and/or edition number or version number) or

non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the

referenced document (including any amendments) applies.

The following referenced documents are necessary for the application of the present document.

[1] oneM2M TS-0011: "Common Terminology".

[2] oneM2M TS-0001: "Functional Architecture".

[3] oneM2M TS-0012: "Base Ontology".

[4] oneM2M TS-0012-v2.2.0: "Base Ontology".

[5] oneM2M TS-0023: "Home Appliances Information Model and Mapping".

[6] oneM2M TS-0014: "LWM2M Interworking".

[7] oneM2M TS-0024: "OIC Interworking".

[8] oneM2M TS-0004: "Service Layer Core Protocol Specification".

2.2 Informative references

References are either specific (identified by date of publication and/or edition number or version number) or

non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the

referenced document (including any amendments) applies.

The following referenced documents are not necessary for the application of the present document but they assist the

user with regard to a particular subject area.

[i.1] oneM2M Drafting Rules.

NOTE: Available at http://www.onem2m.org/images/files/oneM2M-Drafting-Rules.pdf.

[i.2] Smart Appliances REFerence (SAREF) ontology.

NOTE: Available at http://ontology.tno.nl/saref.

http://www.onem2m.org/images/files/oneM2M-Drafting-Rules.pdf
http://ontology.tno.nl/saref

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 6 of 54
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

3 Definitions and abbreviations

3.1 Definitions

For the purposes of the present document, the terms and definitions given in oneM2M TS-0011 [1], oneM2M

TS-0012 [3] and the following apply:

Abstract Device: virtual Device (i.e. a set of oneM2M resources together with an IPE) that allows a communicating

entity to communicate with an Interworked Device, using an Abstract Information Model, without the need to know the

technology specific Device Information Model of that Interworked Device

Abstract Information Model: Information Model of common functionalities abstracted from a set of Device

Information Models (see [1])

Abstraction: process of mapping between a set of Device Information Models and an Abstract Information Model

according to a specified set of rules (see [1])

Abstraction Application Entity: specialized AE that communicates with an IPE and facilitates Abstraction by

providing Services that translate between the Abstract Information Model and the Device Information Model of the IPE

Communicating Entity: oneM2M entity (usually an AE) that communicates with the IPE for the purpose of

sending/receiving data from the Interworked Device

Device Information Model: Information Model of the native protocol (e.g. ZigBee) for the physical device (see [1])

Interworked Device: non-oneM2M device (NoDN) for which communication with oneM2M entities can be achieved

via an Interworking Proxy Application Entity (IPE) (see [3])

Interworking Proxy Application Entity: specialized AE that facititates interworking between Non-oneM2M Nodes

(NoDN) and the oneM2M System.

NOTE: An IPE maps data of the NoDN into oneM2M resources (Interworked Devices). It invokes operations in the

NoDN when the related oneM2M resources are modified and modifies oneM2M resources based on the

output of NoDN operations (see [1])

Proxied Device: virtual Device (i.e. a set of oneM2M resources together with an IPE) that represents the Interworked

Device in the oneM2M System (see [3])

Ontology based Interworking: Ontology based Interworking allows interworking with many types of non- oneM2M

Area Networks and Devices that are described in the form of a oneM2M compliant ontology which is derived from the

oneM2M Base Ontology (see [3])

NOTE: Ontology based Interworking supports the interworking variant "full mapping of the semantic of the non-

oneM2M data model to Mca" as indicated in clause F.2 of oneM2M TS-0001 [2].

3.2 Abbreviations

For the purposes of the present document, the abbreviations given in oneM2M TS-0011 [1], oneM2M TS-0012 [3] and

the following apply:

CE Communicating Entity

IPE Interworking Proxy Application Entity (see [1])

4 Conventions

The key words "Shall", "Shall not", "May", "Need not", "Should", "Should not" in this document are to be interpreted as

described in the oneM2M Drafting Rules [i.1].

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 7 of 54
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

5 Introduction to Ontology based Interworking
(informative)

5.1 Basic concepts of Ontology based Interworking

5.1.1 Ontology based Interworking vs. Specific interworking

oneM2M supports interworking with several specific non-oneM2M solutions. Examples are: LWM2M Interworking

(oneM2M TS-0014 [6]) or OIC Interworking (oneM2M TS-0024 [7]). While these examples refer to specific

technologies oneM2M also allows to specify only data models - e.g. in oneM2M TS-0023: "Home Appliances

Information Model and Mapping" [5] - which does not assume that a specific technology is used. The data model in

oneM2M TS-0023 could e.g. be implemented with 'native' oneM2M entities like ASNs, ADNs and MNs or it could just

as well be implemented in a non-oneM2M solution that is interworked with oneM2M via an Interworking Proxy

Application Entity (IPE).

Ontology based Interworking is taking an approach similar to oneM2M TS-0023, however in this case the data model is

not specified but can flexibly be provided in form of an ontology. That ontology needs to be formally described (e.g. in

OWL format).

Ontology based Interworking can be used in cases where oneM2M does not provide a standardized datamodel but still

interworking is desired. Such a situation may arise if e.g. a company wants to publish their proprietary datamodel for

interworking purposes but does not wish to reveal their proprietary technology (radio technology, communication

protocol) for data transmission.

For Ontology based Interworking the ontology that describes the data model of the interworked technology needs to be

provided in the oneM2M solution. This ontology enables the IPE to create specific resourcetypes (specializations of

<flexContainer>), through dynamically created XSDs that are derived from the ontology.

From these resourcetypes oneM2M resources are created by the IPE for communication of oneM2M communicating

entities with the IPE.

As with any other form of interworking, the IPE provides the translation of data in these resources into/from the

external technology.

5.1.2 Use of ontologies for Ontology based Interworking with Area
Networks

Interworking with Area Networks is accomplished in oneM2M through functionality provided by Interworking Proxy

Entities (IPE).

oneM2M compliant
Solution

Area Network
(e.g. KNX)

Interworked Devices (physical
devices) in the Area Network

Proxied Devices (oneM2M resources)
in the oneM2M System technology

Communicating

entity

R
E

S
T
-f

u
l
R

e
s

o
u

rc
e
 a

c
c

e
s

s

Inter

working

Proxy

Entity

Figure 1: Interworking

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 8 of 54
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

The IPE creates "proxied" devices as oneM2M Resources (e.g. AEs) in the oneM2M Solution that can be accessed by

communicating entities (e.g. oneM2M Applications) in the usual way.

To accomplish the creation of proxied devices the IPE uses an ontology that describes the Device Information Model of

the interworked Area Network and its entities (device types, their operations, etc.).

For example, in figure 1, an ontology that describes a KNX Area Network and its entities would be needed.

To achieve the flexibility for the IPE to create proxied devices for many different types of Area Networks each ontology

that describes a specific Device Information Model needs to be derived from the Base Ontology that is specified in [3].

This allows to specify a common scheme of mapping the classes of the ontology that describes the Device Information

Model into oneM2M resources (see clause 7).

E.g. the OWL representation of an ontology that describes the Device Information Model of an Area Network of type

"KNX" needs to:

a) contain an 'include' statement which includes Base Ontology;

b) the Class of "KNX Nodes" needs to be a subclass of the "Device" Class of oneM2M's Base Ontology;

c) the Class of "KNX Communication Objects" needs to be a subclass of the "Service" Class of the Base

Ontology;

d) etc.

NOTE: For the purpose of Ontology based Interworking with Area Networks the Base Ontology is only used to

describe type information and not for describing instances of these types. E.g. the Base Ontology

describes the type "Device", but does not contain information about a specific device.The Base Ontology

therefore only contains Classes and Properties but not instances.

That principle needs to be followed by the ontology that describes the Device Information Model.

5.2 Using Ontology based Interworking with Device Abstraction

5.2.1 General description

As explained in clause 5.1 it is the task of an IPE to interact via the Area Network with the Interworked Devices and to

provide oneM2M resources (Proxied Devices) to the communicating entities for communication with the Interworked

Devices. However these Proxied Devices still exhibit the native data model - the Device Information Model of the

external technology of the device - and a communicating entity needs to know that native Device Information Model

(e.g. ZigBee, KNX… information model).

Device abstraction relieves a communicating entity that wants to communicate with an Interworked Device (e.g. a

ZigBee device) from the need to know the native Device Information Model of that Interworked Device.

Additionally to providing interworking, the IPE may translate between the - technology specific - native Device

Information Model and an Abstract Information Model, that is based on of common functionalities abstracted from a set

of Device Information Models. Such Abstract Information Models can be provided by industry associations of a

specific industry sector.

An example of an Abstract Information Model, which is specified in oneM2M is the Home Appliance Information

Model (HAIM), specified in oneM2M TS-0023 [5].

As in the case of a native Device Information Model that is used by the IPE also an Abstract Information Model can be

described by an ontology and that ontology needs to be derived from the Base Ontology.

5.2.2 An example, involving ZigBee, HAIM and SAREF

Figure 2 illustrates this situation for a light switch. In the example the physical implementation is a ZigBee device

implementing a ZigBee Service "On/Off Cluster". An IPE for ZigBee creates the interworking towards the ZigBee

network.

To enable abstraction, this device is abstracted as oneM2M device according to the Home Appliance Information Model

(HAIM). In HAIM the corresponding Service is a "binary Switch".

Both types of Services expose a Function "On Off Function" which is e.g. described in the SAREF ontology.

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 9 of 54
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

To turn the switch on SAREF defines an "On Command".

The corresponding Service in HAIM is executed by setting an Input Datapoint called "powerState" to the binary value

"TRUE".

In Zigbee an operation (ZigBee command) needs to be invoked in the On/Off Cluster with an input parameter (ZigBee

Command ID) equal to 0.

A VariableConversion can been specified in the ontology of the ZigBee Device Information Model that contains the

rules how to convert a value of InputDataPoint "powerState" into a value of OperationInput "ZigBee Command ID".

Device
type_DD

hasService hasFunction

Operation
Input

“ID = 0”

exposes
Function Function

“On Off Function”
Service

“On/Off Cluster”

Operation
“ZigBee

Command”

hasOperation

Command
“On Command”

hasCommand

hasInput

exposes
Command

Device
type_DA

hasFunction

Service
“binary Switch”

Input
DataPoint

“powerState
= TRUE”

hasService

exposes
Function

exposes
Command

hasInput
DataPoint

Variable
Conversion

hasConversion

ontology of the Device Information Model
(example ZigBee)

ontology of the Abstract Information Model
(example: HAIM)

convertsTo

Figure 2: Ontologies relations

5.3 Priciples of data flows

5.3.1 Preconditions on the communicating entity

Data flows between a communicating entity and the IPE involve oneM2M resources - specialized <flexContainer>s

and possibly <AE>s - that were created by the IPE for the purpose of that communication.

NOTE 1: In this clause and in the subsequent clauses it is assumed that the communicating entity and the IPE uses

the oneM2M subscribe/notify mechanism to become informed about UPDATEd resources.

It remains, however, an implementation option if subscribe/notify is used or other mechanisms (polling or

other mechanisms, e.g. in case of IPE collocated/integrated in its hosting CSE) are used.

1) Any communicating entity, that:

a. wants to discover interworked non-oneM2M devices of the non-oneM2M system via the IPE needs to

be subscribed to the <AE> resource of the IPE to get notified about newly created resources for

Proxied Devices.

These resources are created by the IPE to represent interworked non-oneM2M devices that were

discovered by the IPE.

• A communicating entity also needs to be subscribed to the <AE> resource of the IPE if it

wants to use network services (e.g. broadcast services, registration services …) that are

offered by the IPE.

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 10 of 54
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

NOTE 2: Since the IPE, in addition to being a oneM2M AE, is part of the non-oneM2M system it contains a non-

oneM2M device that can offer network services.

b. wants to communicate with a specific interworked non-oneM2M device via the IPE needs to be

subscribed to the <flexContainer> (or <AE>) resource that had been created by the IPE to represent

that interworked non-oneM2M device as Proxied Device.

c. wants to communicate with a sub-device of a Proxied Device, represented by a <flexContainer> that

is a child-resource of the Device's <flexContainer> (or <AE>) resource the communicating entity

needs also to be subscribed to that <flexContainer> child-resource.

2) The communicating entity needs also be subscribed to:

a. The <flexContainer> resources, representing Services, that have been created by the IPE as child

resourses of the resource of the Proxied Device. The attribute notificationContentType of the

<subscription> needs to be set to "modified-attributes".

b. The <flexContainer> resources for the Operation invocation. These resources are child-resources of

their respective Service <flexContainer> resources.

The eventNotificationCriteria conditions the notificationEventType needs to contain:

• (B) Deletion of the subscribed-to resource

… to get notified when theoperation becomes unavailable

and, if the operation involves an answer (operation results). also

• (C) Creation of a direct child of the subscribed-to resource

… to get notified about the creation of a <flexContainer> for the Operation result.

c. The <flexContainer> for the Operation result. The attribute notificationContentType of the

<subscription> needs to be set to "all-attributes".

5.3.2 Data flows for communicating with the IPE using DataPoints of a
Service

The following figures show the data flows for communicating with the IPE using DataPoints of a Service.

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 11 of 54
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

UPDATE
OutputDataPoint
customAttribute

of Service
<flexContainer>

UPDATE
InputDataPoint
customAttribute

of Service
<flexContainer>

IPE
Communicating

entity
Interworked

Device

translate input

CSE

NOTIFY
with changed

value of
InputDataPoint

Communication initiated by Communicating entity

Communication initiated by Interworked Device

translate output

Invoke Command

Invoke Command

NOTIFY
with changed

value of
OutputDataPoint

Figure 3: Data flow for an IPE involving dataPoints

When a communicating entity wants to invoke a command on the Interworked Device (e.g. an actuation command),

using Datapoints of the related Service:

• The communicating entity UPDATEs the corresponding <flexContainer> that represents the service with the

new value for customAttribute of the InputDatapoint.

• The CSE subsequently NOTIFYes the IPE about the changed value for customAttribute of the InputDatapoint.

• The IPE invokes the command at the Interworked Device that sends the data of the InputDatapoint to the

Interworked Device.

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 12 of 54
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

When the Interworked Device wants to invoke a command (e.g. a reporting) on the IPE - or a subscribed

communicating entity, using Datapoints of the related Service:

• The Interworked Device invokes the command at the IPE that sends the data of the OutputDatapoint to the

IPE.

• The IPE UPDATEs the corresponding <flexContainer> that represents the Service with the new value for

customAttribute of that OutputDatapoint.

• The CSE subsequently NOTIFYes subscribed communicating entities about the changed value for

customAttribute of the OutputDatapoint.

5.3.3 Data flows for communicating with the IPE using Operations of a
Service

The following figures show the data flows for communicating with the IPE using an Operation of a Service.

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 13 of 54
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

UPDATE Operation result
<flexContainer> with

original OperationInput
and potentially

with OperationOutput

Command response

Invoke Command

UPDATE Operation
invocation

<flexContainer>
potentially

with OperationInput

IPE
Communicating

entity
Interworked

Device

translate input

Waiting for
answer

for configurable
maximum time

translate output

CSE

If operation involves an answer

NOTIFY

Communication initiated by Communicating entity

NOTIFY

Figure 4: Data flow for a translating entity involving operations
when initiated by a communicating entity

In contrast to DataPoints Operations allow grouping of input- and output parameters of a Command into a single

transaction between the communicating entity and the target entity. It is permissible that no OperationInput and/or

OperationOutput data exist for an Operation:

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 14 of 54
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

• When the communicating entity invokes an operation in the target entity it UPDATEs the <flexContainer>

resource for the Operation invocation, potentially with OperationInput values for the related customAttributes.

If the operation involves no OperationInput the UPDATE request contains no customAttributes.

• The CSE subsequently NOTIFYes the IPE about the updated <flexContainer> resource for the Operation

invocation, potetially with OperationInput values for the related customAttributes.

• The IPE invokes the command at the Interworked Device.

If the Operation involves an (optional or mandatory) answer from the Interworked Device then:

• The Interworked Device returns the answer on the command, containing output data, to the IPE. The IPE

needs to wait for that answer for a configurable maximum time that may depend on the technology of the

interworked non-oneM2M solution.

• The IPE UPDATEs the corresponding <flexContainer> that represents the Operation result with

OperationOutput values for the related customAttributes.

• The CSE subsequently NOTIFYes the communicating entity about the update of the <flexContainer> that

represents the Operation result.

6 Functional specification of communication with the
Ontology based Interworking IPE

6.1 oneM2M resources for IPE communication

6.1.1 General design principles

For Ontology based Interworking the oneM2M resource types <AE> and specializations of <flexContainer> are

intended to hold data that can be used for data exchange with the IPE.

For Ontology based Interworking a convention is needed how the IPE uses these resources to communicate with other

oneM2M entities. This is described in the subsequent clauses.

Resources for RESTful communication style vs. procedure call (RPC) style.

A Ontology based Interworking IPE needs to be able to communicate with systems that implement some form of

RESTful communication style as well as other systems that communicate in a procedure call (RPC) style.

For RESTful systems the use of Input- or OutputDataPoints may be more appropriate.

On the other hand procedure calls that involve stateful transactions between the IPE and the Interworked Device can be

better modelled using Operations (and their OperationInputs/-Outputs).

6.1.2 Resource structure for modelling devices, sub-devices, services and
operations

Figure 5 and Figure 6 provide an overview of parent-child resource relationships that are used for communication with

Interworked Devices in the context of Ontology based Interworking.

It involves the oneM2M resource types:

• <AE> - for the Interworking Proxy Entity (IPE).

• A <container> child resource of the <AE> of the IPE - for holding XSD files (for the specializations of

<flexContainers> used in the interworking.

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 15 of 54
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Interworked Devices are represented either by:

• <flexContainer> - child- resource of <AE> of IPE; or

• <AE> - child resources of the hosting CSE of the IPE.

NOTE: An IPE may, instead of creating <flexContainer>resources for Interworked Devices, also choose to

represent them as <AE>s. This option should be chosen if the interworked devices need to be identifiable

for the purpose of service subscription, charging, differentiation during access control enforcement,

authentication, App-ID registry, etc.

• <flexContainer> - for a sub-device

(child-resource of the <flexContainer> or <AE> of its parent device).

• <node> for the node of a Device or sub-device.

• <flexContainer> - for a Service of a Device or sub-device.

(child-resource of the <flexContainer> or <AE> of the device that offers the Service).

- <flexContainer>s for network services (e.g. broadcast services, registration services …) that are offered

by the IPE are child-resources of the IPE's <AE>.

• <flexContainer> - for an Operation (invocation) of a Service.

(child-resource of the <flexContainer> of the Service).

• <flexContainer> - for an Operation (result) of a Service.

(child-resource of the <flexContainer> of the Operation invocation of the Service).

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 16 of 54
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Resources for Generic Interworking
(devices represented as <flexContainer>s)

Not shown: <semanticDescriptor>, <subscription>

<flexContainer>
<flexContainer>

OutputDataPoint

OperationOutput

OperationInput

CSEBase

OutputDataPoint

Service

OperationInput
Operation

(invocation)
OperationInput

<flexContainer>

<AE> IPE

<container>

<contentInstance>
<contentInstance>

<contentInstance>

nodeLink

XSDs of
classes

XSD storage

<flexContainer>

Sub-device

Operation
(result)

OperationInput

OperationOutput

InputDataPoint

InputDataPoint

<node>

node of
sub-device

nodeLink

<flexContainer>
<flexContainer>

<flexContainer>

Device

node of
device

<node>

node of
IPE

<node>

nodeLink

<flexCont><flexContainer>
<flexContainer>

Service
(network services)

<flexCont><flexContainer>
<flexContainer>

<flexCont><flexContainer>
<flexContainer>

Figure 5: Resources used in the context of Ontology based Interworking when
Interworked Devices are represented as <flexContainer>s

Parent-child relationships when Interworked Devices are represented as <flexContainer>s:

• A <container> resource, for holding XSD files, is created as child-resource of the <AE> resource of the IPE.

• <flexContainer> resources, for representing (network) Services are created as child-resources of the <AE> of

the IPE.

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 17 of 54
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

• <flexContainer> resources for representing Interworked Devices are created by the Ontology based

Interworking IPE as child-resources of the IPE's <AE>.

• <flexContainer> resources, for representing sub-devices are created as child-resources of the <flexContainer>

resource that represents the device to which the sub-devices belong.

• <flexContainer> resources, for representing Services are created as child-resources of the <flexContainer>

resource that represents the device or sub-device to which the Service belongs. Input- or OutputDataPoints are

modelled as customAttributes.

• <flexContainer> resources, for representing Operations invocations are created as child-resources of the

<flexContainer> resource that represents the Service to which the Operation belongs.

Only OperationInputs are modelled as customAttributes.

• <flexContainer> resources, for representing Operations results are created as child-resources of the

<flexContainer> resource that represents the Operations invocation to which the Operation result belongs.

Both, OperationInputs and -Outputs are modelled as customAttributes.

• All of the above can contain a <semanticDescriptor> as child resource and may contain <subscription>

resources.

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 18 of 54
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

<flexContainer>
<flexContainer>

<AE><AE>

OutputDataPoint

OperationOutput

OperationInput

CSEBase

<AE>

OutputDataPoint

Service

OperationInputOperation
(invocation)

OperationInput

<flexContainer>

Device

(customAttributes)

<AE>

IPE

<node>

<container>

<contentInstance>
<contentInstance>

<contentInstance>

nodeLink

XSDs of
classes

XSD storage

<flexContainer>

Sub-device

Operation
(result)

OperationInput

OperationOutput

InputDataPoint

InputDataPoint

node of
device

Resources for Generic Interworking
(devices represented as <AE>s)

Not shown: <semanticDescriptor>, <subscription>

<node>

node of
sub-device

nodeLink

Service
(network services)

<flexCont><flexContainer>
<flexContainer>

<flexCont><flexContainer>
<flexContainer>

<flexCont><flexContainer>
<flexContainer>

Figure 6: Resources used in the context of Ontology based Interworking
when Interworked Devices are represented as <AE>s

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 19 of 54
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Parent-child relationships when Interworked Devices are represented as <AE>s:

• A <container> resource, for holding XSD files, is created as child-resource of the <AE> resource of the IPE.

• <flexContainer> resources, for representing (network) Services are created as child-resources of the <AE> of

the IPE.

• An <AE> resource, representing each Interworked Device is created by the IPE as child-resources of the IPE's

hosting CSE.

• <flexContainer> resources, for representing sub-devices are created as child-resources of the <AE> resource

that represents the device to which the sub-devices belong.

• <flexContainer> resources, for representing Services are created as child-resources of the <AE> that

represents the device (or <flexContainer> that represents the sub-device) to which the Service belongs.

Input- or OutputDataPoints are modelled as customAttributes.

• <flexContainer> resources, for representing Operation invocations are created as child-resources of the

<flexContainer> resource that represents the Service to which the Operation belongs.

Only OperationInputs are modelled as customAttributes.

• <flexContainer> resources, for representing Operation results are created as child-resources of the

<flexContainer> resource that represents the Operations invocation to which the Operation result belongs.

Both, OperationInputs and -Outputs are modelled as customAttributes.

• All of the above can contain a <semanticDescriptor> as child resource and may contain <subscription>

resources.

Link relationships:

• The <AE>s and <flexContainer> resources, representing Interworked Devices / fs may have nodeLink

attributes to their respective <node> resources.

NOTE: If Interworked Devices / sub-devices are resident on the same node their nodeLink attributes reference the

same <node> resource.

6.2 Specification of the IPE for Ontology based Interworking

6.2.1 Initialization of the Ontology based Interworking IPE

6.2.1.1 General functionality of a Ontology based Interworking IPE

Ontology based Interworking Interworking supports the interworking variant with full mapping of the semantic of the

non-oneM2M data model to Mca as indicated in clause F.2 of oneM2M TS-0001 [2].

The non-oneM2M data model is described in the form of a oneM2M compliant ontology which is derived (as sub-

classes and sub-properties) from the oneM2M Base Ontology and may be available in a formal description language

(e.g. OWL).

A oneM2M compliant ontology can describe an external technology (e.g. ZigBee) for which a standardized

interworking with oneM2M is required or it could describe a model of consensus that is shared by large industry sector

(like SAREF, referenced in [i.2]) that facilitates the matching of existing assets (standards/protocols/datamodels, etc.).

An IPE that provides Ontology based Interworking with a non-oneM2M system (e.g. an M2M Area Network) shall

instantiate the classes, object- and data properties of the ontology describing the non-oneM2M data model of the

M2MArea Network as oneM2M resources, according to the instantiation described below.

In the following clauses it is assumed that the oneM2M compliant ontology describing the non-oneM2M data model is

available as a formal description (e.g. in OWL format). The location (URI) where the formal description of the ontology

can be retrieved by the IPE needs to be configured in the IPE - either preconfigured or through administrative means.

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 20 of 54
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

6.2.1.2 Initialization sequence of a Ontology based Interworking IPE

After registration of the IPE's <AE> resource the IPE shall do the following:

1) The IPE shall retrieve the formal description of the ontology and parse it.

2) The IPE shall create a child-resource of its <AE> resource of type <container>, subsequently called 'XSD-

storage'

This <container>is will hold the XSDs that are needed to specialize the <flexContainer>s that are used in the

oneM2M resource representation of entities of the non-oneM2M interworked solution:

- The resource name of the <container> resource shall be identical to the name of the ontology, omitting

"http://" and changing each "/" (slash) into "_" (underscore).

- The attribute ontologyRef of that <container>shall contain the reference (URI) to the used ontology.

3) For each class of the ontology the IPE shall create a resource of type <contentInstance> as child resource of this

<container>. That <contentInstance> shall hold the XSD for instantiating the class as <flexContainer>

specialization in oneM2M.

The specification how the IPE shall create XSDs from an ontology is described in clause 7.

- The resource name of each <contentInstance> resource shall be identical to the class name of the

ontology, followed by ".xsd".

- The attribute ontologyRef of that < contentInstance >shall contain the reference (URI) to the class of the

ontology.

EXAMPLE:

For ontology 'http://www.someOrganization.org/someOntology' the IPE would create a

<container> resource with resource name "www.someOrganization.org_someOntology".

Its ontologyRef would contain the URI: 'http://www.someOrganization.org/someOntology'.

 If the ontology defines a class 'http://www.someOrganization.org/someOntology#someService'

then the IPE needs to create a <contentInstance> as child rsource of that that

"www.someOrganization.org_someOntology" <container>. The resource name of that

<contentInstance> would be "someService.xsd".

Its ontologyRef would contain the URI:

'http://www.someOrganization.org/someOntology#someService'.

4) If supported by the technology of the non-oneM2M solution the IPE shall create <flexContainer>s according to

clause 6.2.2.4 for its own (network) services (e.g. broadcast services…) that are provided by the IPE.

5) If supported by the technology of the non-oneM2M solution the IPE shall discover the devices in the non-

oneM2M solution, including their supported services. Alternatively, information about the devices in the the

non-oneM2M solution may be manually configured in the IPE or obtained by other means.

6.2.2 Interworked Device and Service discovery

6.2.2.1 General handling of Interworked Device discovery

If supported by the technology of the non-oneM2M solution the IPE shall continue to discover the devices in the

non-oneM2M solution.

If supported by the technology of the non-oneM2M solution the IPE shall continue to discover services that are

provided by the devices in the non-oneM2M solution.

http://www.someorganization.org/someOntology
http://www.someorganization.org/someOntology
http://www.someorganization.org/someOntology#someService
http://www.someorganization.org/someOntology#someService

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 21 of 54
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

6.2.2.2 Creation of resources for the Proxied Device

6.2.2.2.1 General on the creation of resources for the Proxied Device by the IPE

For each discovered Interworked Device in the non-oneM2M solution the IPE shall:

either:

- create a <flexContainer>child-resource of the IPE's own <AE> to represent the non-oneM2M

Interworked Device in the oneM2M System.

▪ This option should be chosen in most cases, in particular when the individual representations for

Interworked Devices - the Proxied Devices - do not need to be distinguished with regard to service

subscription, charging, etc. as these are derived from the IPE'S <AE>.

or

- register an <AE> resource with the IPE's hosting CSE. That <AE> resource represents the non-oneM2M

Interworked Device in the oneM2M System.

▪ This option should be chosen if the interworked devices need to be identifiable for the purpose of

service subscription, charging, differentiation during access control enforcement, authentication,

App-ID registry, etc.

NOTE: The resource (<flexContainer> or <AE>) that represents the non-oneM2M Interworked Device in the

oneM2M System, together with its child resources, and together with the IPE functionality to execute

CRUDN operations on these resources is called 'Proxied Device' (see definitions clause).

6.2.2.2.2 Creation of resources for the Proxied Device when Interworked Devices are
represented as <flexContainer>s

If the IPE creates <flexContainer>s for Proxied Devices the following rules apply.

For each discovered device in the non-oneM2M solution the IPE shall create a specialized <flexContainer> resource as

child-resource of the <AE> resource of the IPE.

• The specialization type of the <flexContainer> is determined by the XSD file - a <contentInstance>in the

XSD-storage - that correlates to the class of the sub-device in the ontology.

• It is recommended that the resourceName of an <flexContainer> resource that represents an Interworked

Device should be derived and resemble the address (e.g. MAC address) of the Interworked Device in the non-

oneM2M solution.

As the formats of such addresses are very diverse no general rule for that derivation can be given.

• The attribute ontologyRef shall contain the reference (URI) to the class of the ontology that specifies the type

of the Interworked Device.

• The labels attribute of the <flexContainer> may contain the following key- vale pairs:

- Key: "Iwked-Technology" Value: the name of the ontology, omitting "http://" and changing each "/"

(slash) into "_" (underscore).

- Key: "Iwked-Entity-Type" Value: Class name of the class in the ontology (i.e. a sub-class of class

InterworkedDevice of the oneM2M Base OntologyBase Ontology) that specifies the type of the

Interworked Device

• The resourceID of a <node> resource that stores the node specific information where this Interworked Device

resides may be contained in the nodeLink attribute of the <flexContainer> of the Device.

NOTE: Such a <node> resource is required if the device management tasks can be performed via the oneM2M

solution.

• The IPE may create a <semanticDescriptor> child-resource for the <flexContainer> resource that represents

an Interworked Device (see clause 7 in [3]).

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 22 of 54
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

6.2.2.2.3 Creation of resources for the Proxied Device when Interworked Devices are
represented as <AE>s

If the IPE registers individual <AE>s for Proxied Devices the following rules apply:

• As the IPE registers the <AE> as a proxy for the Interworked Device it should either:

- not create a Security Association Establishment procedure, or

- create a Security Association Establishment procedure between the Node on which the IPE <AE> is

hosted and the Registrar CSE. In this case only the Node from which the registration request is received

at the Registrar CSE is authenticated. Thus the IPE, which handles communication for all the Proxied

Devices, can communicate over either a single Security Association or over individual Security

Associations for each Proxied Device.

NOTE 1: The Node authentication as described above (see also oneM2M TS-0001 [1] clause 10.2.2.2) is applicable

as the IPE performs AE functionality for all its Proxied Devices, as if their (virtual) individual AEs were

resident on the same node as the IPE AE.

• The APP-ID of the <AE> shall be the APP-ID of the IPE.

• It is recommended that the AE-ID of an <AE> resource that represents an Interworked Device should be

derived and resemble an identifier of the Interworked Device in the non-oneM2M solution.

As the formats of such identifiers are very diverse no general rule for that derivation can be given.

• It is recommended that the resourceName of an <AE> resource that represents an Interworked Device should

be derived and resemble the address of the Interworked Device in the non-oneM2M solution.

As the formats of such addresses are very diverse no general rule for that derivation can be given.

• The attribute ontologyRef shall contain the reference (URI) to the class of the ontology that specifies the type

of the Interworked Device.

• The labels attribute of may contain the following key- vale pairs:

- Key: "Iwked-Technology" Value: the name of the ontology, omitting "http://" and changing each "/"

(slash) into "_" (underscore).

- Key: "Iwked-Entity-Type" Value: Class name of the class in the ontology (i.e. a sub-class of class

InterworkedDevice of the oneM2M Base OntologyBase Ontology) that specifies the type of the

Interworked Device.

• The resourceID of a <node> resource that stores the node specific information where this Device resides may

be contained in the nodeLink attribute of the <AE> of the Device.

NOTE 2: Such a <node> resource is required if the device management tasks can be performed via the oneM2M

solution.

• The IPE may create a <semanticDescriptor>child-resource for the <AE> (see clause 7 in [4]).

6.2.2.3 Creation of resources for sub-devices

A Device can consist of (i.e. be composed) of several (sub-) Devices. In the oneM2M Base OntologyBase Ontology the

Object Property: consistsOf links a device class to a class of its sub-devices.

For each sub-device of a discovered device in the non-oneM2M solution the IPE shall create a specialized

<flexContainer> resource as child-resource of the <AE> or <flexContainer> resource of the Proxied Device/:

• The specialization type of the <flexContainer> is determined by the XSD file - a <contentInstance>in the

XSD-storage - that correlates to the class of the sub-device in the ontology.

• The resourceName of the <flexContainer> resource of the sub-device shall be identical to the class name of

the (ontology specific sub-class of) class:Device of the sub-device in the ontology.

Example: "switchingSubDevice".

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 23 of 54
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

- If multiple sub-device instances of the same class exist then the resourceName shall be appended by '_'

(underline) and followed by a number to distinguish individual <flexContainer> resources for multiple

(sub-)devices of the same type.

Example: "subDeviceCuff _02" when the device is a blood pressure monitor containing 4 individual

cuffs for measuring blood pressure as sub-devices.

NOTE: The creation of <flexContainer> resources for sub-devices of a device is basically analogous to the

creation of <flexContainer> resources for Services of a device (see next clause).

• The attribute ontologyRef shall contain the reference (URI) to the class of the ontology that specifies the type

of the sub-device.

• The labels attribute of may contain the following key- vale pairs:

- Key: "Iwked-Technology" Value: the name of the ontology, omitting "http://" and changing each "/"

(slash) into "_" (underscore).

- Key: "Iwked-Entity-Type" Value: Class name of the class of the sub-device in the ontology (i.e. a sub-

class of class:InterworkedDevice of the oneM2M Base OntologyBase Ontology).

• The IPE may create a <semanticDescriptor>child-resource.

6.2.2.4 Creation of resources for Services

For each service, that is supported by a device or sub-device the IPE shall create a specialized <flexContainer>

resource, representing the service. The <flexContainer> shall be a child-resource of the Proxied Device representation

(<AE> or <flexContainer> resource in case of an interworked Device, specialized <flexContainer> in case of a sub-

device):

• The services that can be supported by a device or sub-device are specified in the ontology by Object Property:

hasService:

- If a service is mandatory for a specific device then Object Property:hasService (or a sub-property) of the

ontology has a Restriction on cardinality: "exactly 1".

In this case the IPE shall create the specialized <flexContainer> for the Service.

- If a service is optional for a specific device and can have only one instance on the device then Object

Property:hasService (or a sub-property) has a restriction on cardinality: "max 1".

In this case the IPE shall create the specialized <flexContainer> for the Service only if the the IPE can

determine (using methods of the interworked solution) that the (sub)device actually supports the service.

- A service can have multiple instances on a device. In this case Object Property:hasService (or a sub-

property) has no restriction on cardinality or a restriction: e.g. "min [x]"with x>1:

▪ The ontology may specify that the same service of a device exposes multiple, different Functions

(Object Property:exposesFunction). In this case multiple instances of the same service might be

distinguishable by the Function they expose.

▪ If the ontology does not specify the Function that is exposed by the Service or if multiple Services

with the same Function exist in the device then these are semantically indistinguishable

Example: a connector strip containing 5 individual switching services.

 In this case the IPE may create multiple specialized <flexContainer> instances for the Service.

• The specialization type of the <flexContainer> is determined by the XSD file - a <contentInstance> in the

XSD-storage - that correlates with the class of the service in the ontology.

NOTE: The XSD file for the service also includes XSD descriptions for the service's DataPoints - which are

represented as customAttributes of the<flexContainer>for the Service.

• The resourceName of the <flexContainer> resource of the service shall be identical to the class name of the

(ontology specific sub-class of) class:Service in the ontology.

Example: "liquidRemaining".

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 24 of 54
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

- If multiple service instances of the same class:Service exist but expose different Functions (via Object

Property:exposesFunction) then the resourceName shall be appended by '_' (underline), followed by the

class name of the function in the ontology.

Example: "liquidRemaining_ waterStatus", "liquidRemaining_ milkStatus".

- If multiple service instances of the same class:Service exist that expose the same function then the

resourceName shall be appended by '_' (underline), followed by a number to distinguish individual

<flexContainer> resources for multiple services of the same type.

Example: "liquidRemaining_ waterStatus_01", "liquidRemaining_ waterStatus_02".

• The attribute ontologyRef shall contain the reference (URI) to the class of the ontology that specifies the type

of the service.

• The labels attribute of may contain the following key- vale pairs:

- Key: "Iwked-Technology" Value: the name of the ontology, omitting "http://" and changing each "/"

(slash) into "_" (underscore).

- Key: "Iwked-Entity-Type" Value: Class name of the class of the service in the ontology (i.e. a sub-class

of class:Service of the oneM2M Base Ontology).

• The IPE may set access rights for the <flexContainer> resource of the service to restrict/allow AEs to use

(UTDATE and / or RETRIEVE and SUBSCRIBE to) the the <flexContainer> that represents the Service.

• The IPE may create a <semanticDescriptor>child-resource of the <flexContainer> resource of the service.

6.2.2.5 Creation of resources for operations of a service of a device

6.2.2.5.1 Introduction

An Operation is the means of a Service to communicate in a procedure-type manner.

In general an operation is invoked by the communicating entity and can - but need not - have OperationInput

parameters. As a result of the Operation result parameters can - but need not - be returned.

An operation can also be invoked by the Interworked Device and can - but need not - have OperationOutput parameters.

In this case no operation results are envisaged.

NOTE: Analogous to operation invocation by the communicating entity at the Interworked Device also operation

invocation by the Interworked Device at another device (oneM2M native or interworked) can happen.

This case is not supported in the current release.

Operations are represented in the oneM2M systems with one or two types of resources, both of them being specialized

<flexContainer> resources.

• The first type exists for every operation and is used to invoke the operation:

- In the case the operation is invoked by the communicating entity it only contains OperationInput

parameters, if they exist for this type of operation.

- In the case the operation is invoked by the Interworked Device it only contains OperationOutput

parameters, if they exist for this type of operation.

• The second type is a child-resource of the first type and only exists if the operation had been invoked by the

communicating entity and only for operations that can produce OperationOutput parameters. This type

contains both, the OperationInput parameters, if they exist, and the OperationOutput parameters, if they exist.

6.2.2.5.2 Creation of resources for operation invocation

For each operation, that is supported by a service of a device the IPE shall create a specialized <flexContainer>

resource, representing the operation. The <flexContainer> shall be a child-resource of the specialized <flexContainer>

of the service.

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 25 of 54
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

The IPE shall subscribe to all specialized <flexContainer> resources representing operations, that it creates.

• The operations that can be supported by a service are specified in the ontology by Object

Property:hasOperation.

- An Operation for a specific Service can only have at most a single instance at a time. Unless the

operation is optional, i.e. Object Property:hasOperation (or a sub-property) has a restriction on

cardinality: "max 1" the IPE shall create the specialized <flexContainer> that represents the Operation.

NOTE 1: It is quite well possible, that the Interworked Device supports execution of multiple operation instances of

the same operation type at a time. However, mutiple invocations of the same operation type is achieved in

oneM2M by consecutively UPDATEing a single specialized <flexContainer> resource that represents the

Operation input. Thus a single <flexContainer> resource is sufficient to invoke multiple, concurrent

operation instances of that operation in the Interworked Device.

Similarly, also returning OperationOutput parameters is done through a single UPDATE operation on the

specialized <flexContainer> resource that represents the Operation output.

- If an operation is optional for a specific service then Object Property:hasOperation (or a sub-property)

has a restriction on cardinality: "max 1".

In this case the IPE shall create the specialized <flexContainer> for the Operation only if the the IPE can

determine (using methods of the interworked solution) that the Service actually supports the operation.

• The specialization type of the <flexContainer> is determined by the XSD file - a <contentInstance> in the

XSD-storage - that correlates with the class of the operation in the ontology.

NOTE 2: The XSD file for the operation also includes XSD descriptions for the operation's OperationInput

parameters which are represented as customAttributes of the<flexContainer>for the operation.

When the IPE creates the <flexContainer> resource it may ignore customAttributes that represent the

operation's OperationOutput parameters.

• The resourceName of the <flexContainer> resource of the operation shall be identical to the class name of the

(ontology specific sub-class of) class:Operation in the ontology.

Example: "toggle" as an operation of a service of a light switch, "upVolume" as an operation of a service of a

audio device.

• The attribute ontologyRef shall contain the reference (URI) to the class of the ontology that specifies the type

of the operation.

• The labels attribute of may contain the following key- vale pairs:

- Key: "Iwked-Technology" Value: the name of the ontology, omitting "http://" and changing each "/"

(slash) into "_" (underscore).

- Key: "Iwked-Entity-Type" Value: Class name of the class of the operation in the ontology (i.e. a sub-

class of class:Operation of the oneM2M Base Ontology).

• The IPE may set access rights for the <flexContainer> resource of the service to restrict/allow AEs to use

(UTDATE and / or RETRIEVE and SUBSCRIBE to) the the <flexContainer> that represents the Operation.

• The IPE may create a <semanticDescriptor>child-resource of the <flexContainer> resource of the Operation.

6.2.2.5.3 Creation of resources for returning operation results

For each operation, that can produce operation result parameters (i.e. its class:Operation is related via Object Property:

hasOutput to some class:OperationOutput) the IPE shall create a specialized <flexContainer> resource, representing the

result of the operation for a set of invocation parametes. The <flexContainer> shall be a child-resource of the

specialized <flexContainer> resource for operation invocation (described in clause 6.2.2.3.2).

The IPE shall subscribe to this specialized <flexContainer> resource:

• The specialization type of the <flexContainer> is determined by the XSD file - a <contentInstance> in the

XSD-storage - that correlates with the class of the operation in the ontology.

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 26 of 54
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

NOTE: The XSD file for the operation also includes XSD descriptions for the operation's OperationInput and

OperationOutput parameters which are represented as customAttributes of the<flexContainer>.

• The resourceName of the <flexContainer> resource of the operation shall be identical to the class name of the

(ontology specific sub-class of) class:Operation in the ontology, appended by '_result'.
Example: "upVolume_result" as the result of an operation that e.g. returns the current volume level as

OperationOutput parameter.

• The attribute ontologyRef shall contain the reference (URI) to the class of the ontology that specifies the type

of the operation.

• The labels attribute of may contain the following key- vale pairs:

- Key: "Iwked-Technology" Value: the name of the ontology, omitting "http://" and changing each "/"

(slash) into "_" (underscore).

- Key: "Iwked-Entity-Type" Value: Class name of the class of the operation in the ontology (i.e. a sub-

class of class:Operation of the oneM2M Base Ontology).

• The IPE may set access rights for RETRIEVEing the <flexContainer> resource of the operation.

• The IPE may create a <semanticDescriptor>child-resource of the <flexContainer> resource of the operation.

6.2.2.6 Subscription to the created resources

The IPE shall subscribe to all specialized <flexContainer> resources representing services, that it creates.

In particular it shall subscribe to the <flexContainer> resources representing Services and <flexContainer> resources

for the Operation invocation. The attribute notificationContentType of the <subscription> needs to be set to "modified-

attributes".

6.2.3 Handling of DataPoints by the IPE

• When the IPE receives a request by the interworked non-oneM2M device via the non-oneM2M reference point

to write an OutputDataPoint belonging to a Service of the device the IPE shall:

- de-serialize the received data; and

- UPDATE the OutputDataPoint customAttribute of the <flexContainer> resource of the Service with the

output data.

• When the IPE receives a request by the interworked non-oneM2M device via the non-oneM2M reference point

to read an InputDataPoint belonging to a Service of the device the IPE shall:

- RETRIEVE data from the InputDataPoint customAttribute of the <flexContainer> resource of the

Service;

- serialize the data; and

- return them to the non-oneM2M device.

• When the IPE is notified by the CSE that a customAttribute of the <flexContainer> resource of the Service of

the Proxied Device has been changed the IPE shall:

- read the data of the changed customAttribute; and

- invoke the Service, parameterized with data of the InputDataPoint, via the non-oneM2M reference point

in the interworked non-oneM2M device.

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 27 of 54
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

6.2.4 Handling of Operations by the IPE

When the IPE receives notification from the CSE about an UPDATE of the <flexContainer> resource of the operation

the IPE shall perform the following actions:

1. If the operation has OperationInput data the IPE shall RETRIEVE the OperationInput data of the operation

(contained in the customAttributes of the <flexContainer> resource of the operation).

2. The IPE shall serialize OperationInput data and invoke the related operation in the non-oneM2M device via

the non-oneM2M reference point.

3. If the operation allows OperationOutput data (i.e. a <flexContainer> resource for returning operation results

exists as a child-resource of the operation <flexContainer>) the IPE shall handle the result of the operation,

when received from the Interworked Device via the non-oneM2M reference point:

• The IPE shall de-serialize OperationOutput data.

• The IPE shall UPDATE the <flexContainer> resource for returning operation results. The UPDATE

primitive shall contain:

o the customAttributes with the values for the OperationInput data with which the operation had

been invoked, and

o the customAttributes with the values for the OperationOutput data that had been received as

result of the operation.

NOTE: The IPE needs to await the operation results by the Interworked Device for an operation transaction only

for a configurable timespan that may depend on the technology of the non-oneM2M solution. The

duration of that timespan is out of scope of the current specification.

When the the non-oneM2M device invokes an operation in the IPE - which may or may not contain OperationInput

data - via the non-oneM2M reference point (e.g. when the device reacts on some external event and publishes related

output data):

1. The IPE shall de-serialize these data and perform the following actions:

• If the operation invocation contained no OperationInput data the IPE shall UPDATE the

<flexContainer> resource for the operation with NULL values for all customAttributes.

• If the operation invocation contained OperationOutput data then:

o The IPE shall de-serialize OperationOutput data.

o The IPE shall UPDATE the OperationOutput customAttributes of the <flexContainer> resource

for the operation with the values received.

6.2.5 Removing of resources for Proxied Devices

• When a Interworked Device in the non-oneM2M solution becomes unavailable the IPE shall delete the

resource for its Proxied Device and all its child-resources.

• When the IPE detects that an Interworked Device stopped to support a Service (in case such detection is

supported by the technology of the non-oneM2M solution) then the IPE shall delete the <flexContainer>

resource for the service and all its child-resources.

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 28 of 54
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

7 Rules for creation of XSDs from ontologies

7.1 General information

When the non-oneM2M data model is described in the form of a oneM2M compliant ontology which is derived (as sub-

classes and sub-properties) from the oneM2M Base Ontology and is available in a formal description language (e.g.

OWL) then the IPE can create XSDs for the resources needed by communicating entities to communicate with the IPE.

These resources are specializations of <flexContainer>s for Devices, Services and Operations. For these specializations

of <flexContainer>s the IPE also needs to create XSD definitionss for customAttributes of the <flexContainer>.

NOTE: The alternative of using <AE> resources for Devices is not used for Ontology based Interworking as

specified in the current document. <AE> resource types are described in oneM2M TS-0001 [2] and

oneM2M TS-0004 [8].

7.2 XSD creation rules

7.2.1 General rules

7.2.1.1 General principle for creating XSDs

During initialization (clause 6.2.1) a Ontology based Interworking IPE creates XSD files for device types, service types

and operation types, according to the class definitions (sub-classes of class:Device, class:Service, class:Operation) in

the ontology. Each XSD file contains the definition of a single specialization of a <flexContainer> resource type

together with the type definitions that are used for customattributes of that specialization. All of these XSD files are

stored as <contentInstance> child- resources of a <container> resource that acts as a XSD-storage and that is a child

resource of the IPE's <AE>.

The content of these XSD files is entirely based on the information contained in the oneM2M compliant ontology that

describes the data model of the interworked technology and which is derived from the oneM2M Base Ontology.

A Ontology based Interworking IPE can create these XSD files automatically.

In clauses 7.2.2, 7.2.3, 7.2.4 templates for specialization of <flexContainer> resources for Device, Service and

Operation are given. These templates need to be filled in with parameters. The parameters and how they relate to

classes, object properties and data properties of the ontology are given in the next clause 7.2.1.2.

The attribute: containerDefinition of these XSDs shall have a value identical to the absolute, hierarchical address of the

<contentinstance> containing the <flexContainer> specialization (see table 1 below).

Example: //m2m.service.com/IN-CSE-0001/bigFatCse/name_of_IPE_AE/ww.XYZ.com_WashingMachines

/testService.xsd

NOTE: The present specification does not specify short names for primitive parameters, resource attributes,

resource types and complex data types members. Such short names can be created on a proprietary basis

for individual implementations but for interoperability reasons they are not recommended.

7.2.1.2 Parameters for XSD templates

In the subsequent clauses the following conventions for parameters to fill in XSD templates is used. The column

"replacement rules" explains how the parameter is derived from the ontology.

NOTE: This convention follows roughly conventions of ENTITY declarations for DTD. Each ENTITY that is to

be replaced in the XSD starts with "&" and ends with";".

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 29 of 54
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Table 1: Conventions for creation of XSDs from ontologies

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 30 of 54
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

convention Is short for replacement rule

&IPE; resource ID of the <AE> resource of the
IPE

Out of scope of the present
document.

&XSDSTORAGE; resource name of the <container> resource
of the 'XSD-storage'.
also identifies the XML targetnamespace:
targetNamespace="&XSDSTORAGE;"

Shall be identical to the name of the
ontology, omitting "http://" and
changing each "/" (slash) into "_"
(underscore).
Base OntologyThe 'XSD-storage'
<container> is a child-resource of
the <AE> resource of the IPE and
has <contentinstance> child
resources that contain XSDs for the
individual <flexContainer>
specializations.
Example for &XSDSTORAGE;:
ww.XYZ.com_WashingMachines

&XSDFILE; resource name of a <contentInstance>
child-resource of the 'XSD-storage'that
contains a XSD for a <flexContainer>
specialization.

Shall be the concatenation of

• &DEVICE; or

• &SERVICE; or

• &OPERATION;
and ".xsd"
Example: "testService.xsd"

&CONTAINERDEFINITIONVALUE
;

The value of attribute containerDefinition of
the specialization of the <flexContainer>

Shall be identical to the absolute,
hierarchical address of the
<contentinstance> containing the
<flexContainer> specialization.
It is the concatenation of:
[address of the Gen-IWK IPE],
"/", &XSDSTORAGE;,"/",
&XSDFILE;
Example:
//m2m.service.com/IN-CSE-
0001/bigFatCse/name_of_IPE_AE/
ww.XYZ.com_WashingMachines
/testService.xsd

&DEVICE;
&DEVICE_1;
…
&DEVICE_n;

Name of <flexContainer> specialization
type for a device or a sub-device.

Shall be identical to a class name of
a class:Device that is in the range
of object property:consistsOf. It
identifies a device type.
Base Ontology

&SERVICE_1;
…
&SERVICE_n;

Name of <flexContainer> specialization
type for a Service

Shall be identical to the name of a
Service class in the ontology.
The class is in the range of object
property:hasService of a Device.
(See Note 3)

&OPERATION_1;
…
&OPERATION_n;

Name of <flexContainer> specialization
type for an Operation
See Note 1

Shall be identical to the name of an
Operation class in the ontology
The class is in the range of object
property:hasOperation of a Service.

&THINGPROPERTY_1;
…
&THINGPROPERTY_n;

Name of a customAttribute of the Device's
<flexContainer> describing a
ThingpProperty of the device.

Shall be identical to the name of a
ThingProperty class in the ontology
The class is in the range of object
property: hasThingProperty of a
Device

&INPUTDATAPOINT_1;
…
&INPUTDATAPOINT_n;

Name of a customAttribute of the Service's
<flexContainer> describing an
InputDataPoint

Shall be identical to the name of a
InputDataPoint class of the service
The class is in the range of object
property:hasInputDataPoint of a
Service.

&OUTPUTDATAPOINT_1;
…
&OUTPUTDATAPOINT_n;

Name of a customAttribute of the Service's
<flexContainer> describing an
OutputDataPoint

Shall be identical to the name of a
OutputDataPoint class of the
service
The class is in the range of object
property:hasOutputDataPoint of a
Service.

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 31 of 54
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

convention Is short for replacement rule

&OPERATIONINPUT_1;
…
&OPERATIONINPUT_n;

Name of a customAttribute of the
Operation's <flexContainer> describing an
OperationInput

Shall be identical to the name of a
OperationInput class of the
Operation
The class is in the range of object
property:hasInput of an Operation.

&OPERATIONOUTPUT_1;
…
&OPERATIONOUTPUT_n;

Name of a customAttribute of the
Operation's <flexContainer> describing an
OperationOutput

Shall be identical to the name of a
OperationOutput class of the
Operation.
The class is in the range of object
property:hasOutput of an Operation.

&SIMPLEDATATYPE; One out of:
xs:NCName ,
xs:anySimpleType ,
xs:anyType ,
xs:anyURI ,
xs:base64Binary ,
xs:boolean ,
xs:decimal ,
xs:dateTime,
xs:double ,
xs:duration ,
xs:float ,
xs:hexBinary ,
xs:integer ,
xs:language ,
xs:nonNegativeInteger ,
xs:normalizedString ,
xs:positiveInteger ,
xs:string ,
xs:token ,
xs:unsignedInt ,
xs:unsignedLong ,
xs:unsignedShort

Shall be identical to the value of the
data property:hasDataType

&RESTRICTIONVALUE; The value of the restriction Is a regular expression in case of
restriction type
&RESTRICTIONTYPE; =
xs:pattern, in all other cases a
number

&TYPENAME; Name of the type of a variable
(Inut/OutputDataPoint,
OperationInput/Output,Thingproperty) or
name of a sub-structure in a
StructuredTypeVariable

Shall be identical to the name the
class of a Variable or sub-structure
(i.e. a Variable that is the range of
object property:hasSubStructure),
adding "Type" to that name.
e.g. if the name of an
OutputDataPoint class is
&OUTPUTDATAPOINT; =
"temperature" then the
&TYPENAME; is
"temperatureType".
If "temperature" is a
StructuredTypeVariable, containing
substructures with
&VARIABLENAME_1; =
"fahrenheit" and
&VARIABLENAME_2; = "accuracy"
then the two &TYPENAME;s would
be "fahrenheitType" and
"accuracyType"

&VARIABLENAME_1;
&VARIABLENAME_2;
…
&VARIABLENAME_n;

name of a sub-structure in a
StructuredTypeVariable

Shall be identical to the class name
of a Variable that is the range of
object property:hasSubStructure

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 32 of 54
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

convention Is short for replacement rule

NOTE 1: In case the operation produces operation output an instance of the <flexContainer> for that operation may
have a child-resource of the same <flexContainer> specialization type for that Operation to contain the
operation output data.

NOTE 2: For the kind of restriction (xs:minInclusive, xs:maxInclusive …) of simple data types no convention is given
in this table. Its entry in the XSD file is given by the line:
<kind-of-restriction value="&RESTRICTIONVALUE;"/> where kind-of-restriction is given by the value in the
range of a specific sub-property of Data Property: hasDataRestriction of a SimpeTypeVariable. It is possible
to specify no restrictions, one restriction or multiple restrictions for a simple data type.

NOTE 3: Sub-services (range of object property:hasSubService of a Service) are not considered in this release.

7.2.1.3 Data typing for Variables

7.2.1.3.1 Information on datatypes contained in the ontology

All classes of the Base Ontology that describe data (i.e. InputDataPoint, OutputDataPoint, OperationInput,

OperationOutput, ThingProperty are sub-classes of either the class:SimpleTypeVariable or the class

StructuredTypeVariable. (This is due to the fact that class:Variable is the disjoint union of classes SimpleTypeVariable

and StructuredTypeVariable).

Class:Variable and its sub-classes Class:SimpleTypeVariable and StructuredTypeVariable support (i.e. are the domain

class of) properties that allow to specify the datatype of the variable:

• Class:SimpleTypeVariable supports data property:isDataList (range: xsd:Boolean).

If a class of the ontology that describes the Interworked Device is a sub-class of class:SimpleTypeVariable and

"isDataList value TRUE" is specified then the class describes a list data type. Similarly, if "isDataList value

FALSE" is specified or property:isDataList is not specified then the class describes a data type describing a

single value.

• Class:SimpleTypeVariable supports data property:hasDataType. The range of data property:hasDataType is

the set of following strings:

 {"xs:NCName" , "xs:anySimpleType" , "xs:anyType" , "xs:anyURI" , "xs:base64Binary" ,

"xs:boolean" , "xs:dateTime" , "xs:decimal" , "xs:double" , "xs:duration" , "xs:float" ,

"xs:hexBinary" , "xs:integer" , "xs:language" , "xs:nonNegativeInteger" , "xs:normalizedString" ,

"xs:positiveInteger" , "xs:string" , "xs:token" , "xs:unsignedInt" , "xs:unsignedLong" ,

"xs:unsignedShort"}

This data property indicates that the data type of the Variable is exactly one of these simple XML data types, contained

in https://www.w3.org/TR/xmlschema11-2 (see [3] clause 6.3.1).

For example if a class of the ontology that describes the Interworked Device is a sub-class of class:SimpleTypeVariable

and " hasDataType value "xs:integer"" is specified then the class describes an integer value (or, if additionally

"isDataList value TRUE" is specified, then the class describes a list of integer values).

• Class:SimpleTypeVariable also supports data property:hasDataRestriction and its sub-properties:

- hasDataRestriction_minInclusive,

- hasDataRestriction_maxInclusive,

- hasDataRestriction_minExclusive,

- hasDataRestriction_maxExclusive,

- hasDataRestriction_length,

- hasDataRestriction_minLength,

- hasDataRestriction_maxLength,

- hasDataRestriction_pattern,

 which specify restrictions on the permissible values of the data.

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 33 of 54
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

• In addition Class: StructuredTypeVariable supports object property:hasSubStructure (range: class:Variable).

This object property allows to create complex, structured data types. Each class in the range of object

property:hasSubStructure signifies an element of the structure.

EXAMPLE:

If a class XY of the ontology is a sub-class of class:Variable and supports object property:

- hasSubStructure range class:X (class:X being a sub-class of class:Variable)

- hasSubStructure range class:Y (class:Y being a sub-class of class:Variable)

then class XY is also a sub-class of class: StructuredTypeVariable and describes a structured data type that has data

types X and Y as sub structures.

NOTE: The data properties:hasDataType, isDataList and the object property:hasSubStructure are mutually

exclusive:

class:SimpleTypeVariable specifies (is defined as a sub-class of:)"hasSubStructure exactly 0 Variable".

A data type cannot at the same time be a simple data type and a structured data type!

7.2.1.3.2 Construction of Simple Data Types

If class:Variable supports:

• data property: isDataList value FALSE

• data property: hasDataType value $SIMPLEDATATYPE$

then the XSD for the <flexContainer> that contains a customAttribute of that type (given by &TYPENAME;) needs to

contain the typedefinition for that customAttribute.

Table 2: Type definition for Simple Types

 <!-- ********************** -->

 <!-- Ontology based IWK Simple Types -->

 <!-- ********************** -->

 <xs:simpleType name="&TYPENAME;">

 <xs:restriction base="&SIMPLEDATATYPE;">

 <!-- next lines for restrictions of the values. Remove not needed ones, Multiple restrictiontypes possible --

>

 <xs:minInclusive value="&RESTRICTIONVALUE;"/>

 <!-- ... xs:minInclusive, xs:maxInclusive, xs:minExclusive, xs:maxExclusive, xs:length, xs:minLength,

xs:maxLength, xs:pattern -->

 <xs:maxInclusive value="&RESTRICTIONVALUE;"/>

 <!-- end of lines only for restrictions of the values -->

 </xs:restriction>

 </xs:simpleType>

Example:
if the name of an OutputDataPoint class is &OUTPUTDATAPOINT; = "temperature", which contains a temperature value in

Celsius, then a type definition could be

 <xs:simpleType name="temperatureType">

 <xs:restriction base="xs:float">

 < xs:minInclusive value="−273.15"/>

 < xs:maxInclusive value="100"/>

 </xs:restriction>

 </xs:simpleType>

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 34 of 54
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

7.2.1.3.3 List Data Types

If class:Variable supports:

• data property: isDataList value TRUE

• data property: hasDataType value $SIMPLEDATATYPE$

then the XSD for the <flexContainer> that contains a customAttribute of that type (given by &TYPENAME;) needs to

contain the typedefinition for that customAttribute.

Table 3: Type definition for List Data Types

 <!--********************** -->

 <!-- Ontology based IWK Simple Types (Lists)-->

 <!--********************** -->

 <xs:simpleType name="&TYPENAME;">

 <xs:restriction>

 <xs:simpleType>

 <xs:list>

 <xs:simpleType>

 <xs:restriction base="&SIMPLEDATATYPE;">

 </xs:restriction>

 </xs:simpleType>

 </xs:list>

 </xs:simpleType>

 <!-- next lines for restrictions of the values. Remove not needed ones, Multiple restrictiontypes possible -->

 <xs: xs:pattern value="&RESTRICTIONVALUE;"/>

 <!-- ... xs:minInclusive, xs:maxInclusive, xs:minExclusive, xs:maxExclusive, xs:length, xs:minLength,

xs:maxLength, xs:pattern -->

 <xs:maxLength value="&RESTRICTIONVALUE;"/>

 <!-- end of lines only for restrictions of the values -->

 </xs:restriction>

 </xs:simpleType>

Example:
if the name of an OutputDataPoint class is &OUTPUTDATAPOINT; = "temperatureSeries", which contains a list of

up to 10 temperature values, then a type definition could be

 <xs:simpleType name="temperatureSeriesType">

 <xs:restriction>

 <xs:simpleType>

 <xs:list>

 <xs:simpleType>

 <xs:restriction base="xs:float">

 </xs:restriction>

 </xs:simpleType>

 </xs:list>

 </xs:simpleType>

 < xs:minInclusive value="−273.15"/>

 <xs:maxLength value="10"/>

 </xs:restriction>

 </xs:simpleType>

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 35 of 54
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

7.2.1.3.4 Structured Data Types

If class:Variable supports:

• data property: isDataList value FALSE

• object property: hasSubStructure with range class:&VARIABLENAME_1;

• object property: hasSubStructure with range class:&VARIABLENAME_2;

• …

• object property: hasSubStructure with range class:&VARIABLENAME_n;

then the XSD for the <flexContainer> that contains that customAttribute needs to contain the typedefinition (given by

&TYPENAME;) for that customAttribute.

Additionally (simple or complex) typedefinitions for the Variables that are in the range of object property:

hasSubStructure (given by &TYPENAME_1; … &TYPENAME_n;) need to be contained in the XSD.

Table 4: Type definition for Structured Data Types

 <!--********************** -->

 <!-- Ontology based IWK Complex Types -->

 <!--********************** -->

 <xs:complexType name="&TYPENAME;">

 <xs:sequence>

 <!-- should include all classes:Variable that are in the range of object property:hasSubStructure -->

 <xs:element name="&VARIABLENAME_1;" type=" obi:&TYPENAME_1;"/>

 <!-- ... -->

 <xs:element name="&VARIABLENAME_n;" type=" obi:&TYPENAME_n;"/>

 </xs:sequence>

 </xs:complexType>

Example:

if the name of a OutputDataPoint class is &OUTPUTDATAPOINT; = "accurateTemperature" and that

"accurateTemperature" is a StructuredTypeVariable, containing substructures with &VARIABLENAME_1; =

"fahrenheit" and &VARIABLENAME_2; = "accuracy" then then a type definition could be

 <xs:complexType name="accurateTemperatureType">

 <xs:sequence>

 <!-- should include all classes:Variable that are in the range of object property:hasSubStructure -->

 <xs:element name="fahrenheit" type="fahrenheitType"/>

 <!-- ... -->

 <xs:element name="accuracy" type="accuracyType"/>

 </xs:sequence>

 </xs:complexType>

7.2.2 XSD template for sub-classes of Base Ontology class: Device

This clause only applies for the case when an Interworked Device is represented as <flexContainer>. In case an

Interworked Device is represented as <AE> the resource definition of the <AE> resource in oneM2M TS-0001 [2]

applies.

Specific XSD definition for class:Device to be substituted at the placeholder in the XSD skeleton in clause 7.2.1.2

The value of attribute containerDefinition of the specialization of the <flexContainer> shall be set as specified in

table 1. Example: <xs:element name="containerDefinition" type="//m2m.service.com/IN-CSE-

0001/bigFatCse/name_of_IPE_AE/ww.XYZ.com_WashingMachines /testDevice.xsd" />.

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 36 of 54
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Table 5: Template definition of a <flexContainer> for Device

 <?xml version="1.0" encoding="UTF-8"?>

<!--

Copyright Notification

The oneM2M Partners authorize you to copy this document, provided that you retain all copyright and other proprietary notices

contained in the original materials on any copies of the materials and that you comply strictly with these terms.

This copyright permission does not constitute an endorsement of the products or services, nor does it encompass the granting of

any patent rights. The oneM2M Partners assume no responsibility for errors or omissions in this document.

© 2016, oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC). All rights reserved.

Notice of Disclaimer & Limitation of Liability

The information provided in this document is directed solely to professionals who have the appropriate degree of experience to

understand

and interpret its contents in accordance with generally accepted engineering or other professional standards and applicable

regulations.

No recommendation as to products or vendors is made or should be implied.

NO REPRESENTATION OR WARRANTY IS MADE THAT THE INFORMATION IS TECHNICALLY ACCURATE OR

SUFFICIENT OR CONFORMS TO ANY STATUTE,

GOVERNMENTAL RULE OR REGULATION, AND FURTHER, NO REPRESENTATION OR WARRANTY IS MADE OF

MERCHANTABILITY OR FITNESS FOR ANY

PARTICULAR PURPOSE OR AGAINST INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS.

NO oneM2M PARTNER TYPE 1 SHALL BE LIABLE, BEYOND THE AMOUNT OF ANY SUM RECEIVED IN PAYMENT

BY THAT PARTNER FOR THIS DOCUMENT, WITH RESPECT TO

ANY CLAIM, AND IN NO EVENT SHALL oneM2M BE LIABLE FOR LOST PROFITS OR OTHER INCIDENTAL OR

CONSEQUENTIAL DAMAGES.

oneM2M EXPRESSLY ADVISES ANY AND ALL USE OF OR RELIANCE UPON THIS INFORMATION PROVIDED IN

THIS DOCUMENT IS AT THE RISK OF THE USER.

-->

<!DOCTYPE placeholders [<!-- ==== examples; see description in table 1 ==== -->

<!ENTITY XSDSTORAGE "ww.XYZ.com_WashingMachines"> <!-- Example targetNamespace value -->

<!ENTITY DEVICE "testDevice"> <!-- Example name of the device defined in this file-->

<!ENTITY DEVICE_1 "device_1"> <!-- Example name of sub-device -->

<!ENTITY DEVICE_n "device_n"> <!-- Example name of sub-device -->

<!ENTITY SERVICE_1 "service_1"> <!-- Example name of service of this device -->

<!ENTITY SERVICE_n "service_n"> <!-- Example name of service of this device -->

<!ENTITY THINGPROPERTY_1 "tp_1"> <!-- Example name of thingProperty of this device -->

<!ENTITY THINGPROPERTY_n "tp_n"> <!-- Example name of thingProperty of this device -->

<!ENTITY TYPENAME_1 "tp_1Type"> <!-- Example type name (of thingProperty) -->

<!ENTITY TYPENAME_2 "variablename_1Type"> <!-- Example type name (of sub-structure) -->

<!ENTITY TYPENAME_3 "variablename_3Type"> <!-- Example type name (of sub-structure) -->

<!ENTITY TYPENAME_n " tp_nType "> <!-- Example type name (of thingProperty) -->

<!ENTITY VARIABLENAME_1 "variablename_1"> <!-- Example variable name (of sub-structure) -->

<!ENTITY VARIABLENAME_n "variablename_n"> <!-- Example variable name (of sub-structure) -->

<!ENTITY SIMPLEDATATYPE "xs:integer"> <!-- Example simple datatype -->

<!ENTITY RESTRICTIONVALUE "100"> <!-- Example value of a type restriction -->

]>

<xs:schema xmlns="http://www.w3.org/2001/XMLSchema" targetNamespace="&XSDSTORAGE;"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:m2m="http://www.onem2m.org/xml/protocols"

 xmlns:obi="&XSDSTORAGE;"

 elementFormDefault="unqualified" attributeFormDefault="unqualified">

 <xs:import namespace="http://www.onem2m.org/xml/protocols" schemaLocation="CDT-semanticDescriptor-v3_0_0.xsd"/>

 <xs:import namespace="http://www.onem2m.org/xml/protocols" schemaLocation="CDT-subscription-v3_0_0.xsd"/>

 <!-- include XSDs of child resources: (sub-)Devices and Services used in this Device -->

 <xs:include schemaLocation="&DEVICE_1;.xsd" />

 <!-- ... -->

 <xs:include schemaLocation="&DEVICE_n;.xsd" />´

 <xs:include schemaLocation="&SERVICE_1;.xsd" />

 <!-- ... -->

 <xs:include schemaLocation="&SERVICE_n;.xsd" />

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 37 of 54
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

 <xs:element name="&DEVICE;" substitutionGroup="m2m:sg_flexContainerResource">

 <xs:complexType>

 <xs:complexContent>

 <!-- Inherit Common Attributes from data type "flexContainerResource" -->

 <xs:extension base="m2m:flexContainerResource">

 <xs:sequence>

 <!-- Resource Specific Attributes -->

 <!-- nodeLink as custom attribute -->

 <xs:element name="nodeLink" type="xs:anyURI" minOccurs="0"/>

 <!-- all OperationInput- and Outputs are listed here as custom attributes -->

 <xs:element name="&THINGPROPERTY_1;" type=" obi:&TYPENAME_1;" minOccurs="0"/>

 <!-- ... -->

 <xs:element name="&THINGPROPERTY_n;" type=" obi:&TYPENAME_n;" minOccurs="0"/>

 <!-- Child Resources -->

 <xs:choice minOccurs="0" maxOccurs="1">

 <xs:element name="childResource" type="m2m:childResourceRef" minOccurs="1" maxOccurs="unbounded"/>

 <xs:choice minOccurs="1" maxOccurs="unbounded">

 <!-- Device specific Child Resources (sub-Devices of the Device) -->

 <xs:element ref=" obi:&DEVICE_1;"/>

 <!-- ... -->

 <xs:element ref=" obi:&DEVICE_n;"/>

 <!-- Device specific Child Resources (Services of the Device) -->

 <xs:element ref=" obi:&SERVICE_1;"/>

 <!-- ... -->

 <xs:element ref=" obi:&SERVICE_n;"/>

 <!-- Common Child Resources -->

 <xs:element ref="m2m:semanticDescriptor"/>

 <xs:element ref="m2m:subscription"/>

 </xs:choice>

 </xs:choice>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 </xs:element>

 <!-- types used for ThingProperties of this Device -->

 <!-- ********************** -->

 <!-- Ontology based IWK Simple Types -->

 <!-- ********************** -->

 <xs:simpleType name="&TYPENAME_1;">

 <xs:restriction base="&SIMPLEDATATYPE;"/>

 </xs:simpleType>

 <xs:simpleType name="&TYPENAME_2;">

 <xs:restriction base="&SIMPLEDATATYPE;">

 <!-- next lines for restrictions of the values. Remove not needed ones, Multiple restrictiontypes possible -->

 <xs:minInclusive value="&RESTRICTIONVALUE;"/>

 <!-- ... xs:minInclusive, xs:maxInclusive, xs:minExclusive, xs:maxExclusive, xs:length, xs:minLength, xs:maxLength,

xs:pattern -->

 <xs:maxInclusive value="&RESTRICTIONVALUE;"/>

 <!-- end of lines only for restrictions of the values -->

 </xs:restriction>

 </xs:simpleType>

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 38 of 54
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

 <!--********************** -->

 <!-- Ontology based IWK Simple Types (Lists)-->

 <!--********************** -->

 <xs:simpleType name="&TYPENAME_3;">

 <xs:restriction>

 <xs:simpleType>

 <xs:list>

 <xs:simpleType>

 <xs:restriction base="&SIMPLEDATATYPE;">

 </xs:restriction>

 </xs:simpleType>

 </xs:list>

 </xs:simpleType>

 <!-- next lines for restrictions of the values. Remove not needed ones, Multiple restrictiontypes possible -->

 <xs: xs:pattern value="&RESTRICTIONVALUE;"/>

 <!-- ... xs:minInclusive, xs:maxInclusive, xs:minExclusive, xs:maxExclusive, xs:length, xs:minLength, xs:maxLength,

xs:pattern -->

 <xs:maxLength value="&RESTRICTIONVALUE;"/>

 <!-- end of lines only for restrictions of the values -->

 </xs:restriction>

 </xs:simpleType>

 <!--********************** -->

 <!-- Ontology based IWK Complex Types -->

 <!--********************** -->

 <xs:complexType name="&TYPENAME_n;">

 <xs:sequence>

 <!-- should include all classes:Variable that are in the range of object property:hasSubStructure -->

 <xs:element name="&VARIABLENAME_1;" type=" obi:&TYPENAME_2;"/>

 <!-- ... -->

 <xs:element name="&VARIABLENAME_n;" type=" obi:&TYPENAME_3;"/>

 </xs:sequence>

 </xs:complexType>

</xs:schema>

7.2.3 XSD template for sub-classes of Base Ontology class: Service

Specific XSD definition for class:Service to be substituted at the placeholder in the XSD skeleton in clause 7.2.1.2.

The value of attribute containerDefinition of the specialization of the <flexContainer> shall be set as specified in

table 1. Example: <xs:element name="containerDefinition" type="//m2m.service.com/IN-CSE-

0001/bigFatCse/name_of_IPE_AE/ww.XYZ.com_WashingMachines /testService.xsd" />.

Table 6: Template definition of a <flexContainer> for Service

<?xml version="1.0" encoding="UTF-8"?>

<!--

Copyright Notification

The oneM2M Partners authorize you to copy this document, provided that you retain all copyright and other proprietary notices

contained in the original materials on any copies of the materials and that you comply strictly with these terms.

This copyright permission does not constitute an endorsement of the products or services, nor does it encompass the granting of

any patent rights. The oneM2M Partners assume no responsibility for errors or omissions in this document.

© 2016, oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC). All rights reserved.

Notice of Disclaimer & Limitation of Liability

The information provided in this document is directed solely to professionals who have the appropriate degree of experience to

understand

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 39 of 54
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

and interpret its contents in accordance with generally accepted engineering or other professional standards and applicable

regulations.

No recommendation as to products or vendors is made or should be implied.

NO REPRESENTATION OR WARRANTY IS MADE THAT THE INFORMATION IS TECHNICALLY ACCURATE OR

SUFFICIENT OR CONFORMS TO ANY STATUTE,

GOVERNMENTAL RULE OR REGULATION, AND FURTHER, NO REPRESENTATION OR WARRANTY IS MADE OF

MERCHANTABILITY OR FITNESS FOR ANY

PARTICULAR PURPOSE OR AGAINST INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS.

NO oneM2M PARTNER TYPE 1 SHALL BE LIABLE, BEYOND THE AMOUNT OF ANY SUM RECEIVED IN PAYMENT

BY THAT PARTNER FOR THIS DOCUMENT, WITH RESPECT TO

ANY CLAIM, AND IN NO EVENT SHALL oneM2M BE LIABLE FOR LOST PROFITS OR OTHER INCIDENTAL OR

CONSEQUENTIAL DAMAGES.

oneM2M EXPRESSLY ADVISES ANY AND ALL USE OF OR RELIANCE UPON THIS INFORMATION PROVIDED IN

THIS DOCUMENT IS AT THE RISK OF THE USER.

-->

<!DOCTYPE placeholders [<!-- ==== examples; see description in table 1 ==== -->

<!ENTITY XSDSTORAGE "ww.XYZ.com_WashingMachines"> <!-- Example targetNamespace value -->

<!ENTITY SERVICE "testService"> <!-- Example name of the service defined in this file-->

<!ENTITY OPERATION_1 "operation_1"> <!-- Example name of operation -->

<!ENTITY OPERATION_n "operation_n"> <!-- Example name of operation -->

<!ENTITY INPUTDATAPOINT_1 "idp_1"> <!-- Example name of inputDataPoint of this service -->

<!ENTITY INPUTDATAPOINT_n "idp_n"> <!-- Example name of inputDataPoint of this service -->

<!ENTITY OUTPUTDATAPOINT_1 "odp_1"> <!-- Example name of outputDataPoint of this service -->

<!ENTITY OUTPUTDATAPOINT_n "odp_n"> <!-- Example name of outputDataPoint of this service -->

<!ENTITY TYPENAME_1 "idp_1Type"> <!-- Example type name (of DataPoint) -->

<!ENTITY TYPENAME_2 "variablename_1Type"> <!-- Example type name (of sub-structure) -->

<!ENTITY TYPENAME_3 "variablename_3Type"> <!-- Example type name (of sub-structure) -->

<!ENTITY TYPENAME_n " odp_nType "> <!-- Example type name (of DataPoint) -->

<!ENTITY VARIABLENAME_1 "variablename_1"> <!-- Example variable name (of sub-structure) -->

<!ENTITY VARIABLENAME_n "variablename_n"> <!-- Example variable name (of sub-structure) -->

<!ENTITY SIMPLEDATATYPE "xs:integer"> <!-- Example simple datatype -->

<!ENTITY RESTRICTIONVALUE "100"> <!-- Example value of a type restriction -->

]>

<xs:schema xmlns="http://www.w3.org/2001/XMLSchema" targetNamespace="&XSDSTORAGE;"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:m2m="http://www.onem2m.org/xml/protocols"

 xmlns:obi="&XSDSTORAGE;"

 elementFormDefault="unqualified" attributeFormDefault="unqualified">

 <xs:import namespace="http://www.onem2m.org/xml/protocols" schemaLocation="CDT-semanticDescriptor-v3_0_0.xsd"/>

 <xs:import namespace="http://www.onem2m.org/xml/protocols" schemaLocation="CDT-subscription-v3_0_0.xsd"/>

 <!-- include XSDs of child resources: Operations used in this Service -->

 <xs:include schemaLocation="&OPERATION_1;.xsd" />

 <!-- ... -->

 <xs:include schemaLocation="&OPERATION_n;.xsd" />

 <xs:element name="&SERVICE;" substitutionGroup="m2m:sg_flexContainerResource">

 <xs:complexType>

 <xs:complexContent>

 <!-- Inherit Common Attributes from data type "flexContainerResource" -->

 <xs:extension base="m2m:flexContainerResource">

 <xs:sequence>

 <!-- Resource Specific Attributes -->

 <!-- all Input- and OutputDatapoints are listed here as custom attributes -->

 <xs:element name="&INPUTDATAPOINT_1;" type=" obi:&TYPENAME_1;" minOccurs="0"/>

 <xs:element name="&OUTPUTDATAPOINT_1;" type=" obi:&TYPENAME_1;" minOccurs="0"/>

 <!-- ... -->

 <xs:element name="&INPUTDATAPOINT_n;" type=" obi:&TYPENAME_n;" minOccurs="0"/>

 <xs:element name="&OUTPUTDATAPOINT_n;" type=" obi:&TYPENAME_n;" minOccurs="0"/>

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 40 of 54
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

 <!-- Child Resources -->

 <xs:choice minOccurs="0" maxOccurs="1">

 <xs:element name="childResource" type="m2m:childResourceRef" minOccurs="1" maxOccurs="unbounded"/>

 <xs:choice minOccurs="1" maxOccurs="unbounded">

 <!-- Service specific Child Resources (Operations of the Service) -->

 <xs:element ref=" obi:&OPERATION_1;"/>

 <!-- ... -->

 <xs:element ref=" obi:&OPERATION_n;"/>

 <!-- Common Child Resources -->

 <xs:element ref="m2m:semanticDescriptor"/>

 <xs:element ref="m2m:subscription"/>

 </xs:choice>

 </xs:choice>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 </xs:element>

<!-- types used for Datapoints of this Service -->

 <!-- ********************** -->

 <!-- Ontology based IWK Simple Types -->

 <!-- ********************** -->

 <xs:simpleType name="&TYPENAME_1;">

 <xs:restriction base="&SIMPLEDATATYPE;"/>

 </xs:simpleType>

 <xs:simpleType name="&TYPENAME_2;">

 <xs:restriction base="&SIMPLEDATATYPE;">

 <!-- next lines for restrictions of the values. Remove not needed ones, Multiple restrictiontypes possible -->

 <xs:minInclusive value="&RESTRICTIONVALUE;"/>

 <!-- ... xs:minInclusive, xs:maxInclusive, xs:minExclusive, xs:maxExclusive, xs:length, xs:minLength, xs:maxLength,

xs:pattern -->

 <xs:maxInclusive value="&RESTRICTIONVALUE;"/>

 <!-- end of lines only for restrictions of the values -->

 </xs:restriction>

 </xs:simpleType>

 <!--********************** -->

 <!-- Ontology based IWK Simple Types (Lists)-->

 <!--********************** -->

 <xs:simpleType name="&TYPENAME_3;">

 <xs:restriction>

 <xs:simpleType>

 <xs:list>

 <xs:simpleType>

 <xs:restriction base="&SIMPLEDATATYPE;">

 </xs:restriction>

 </xs:simpleType>

 </xs:list>

 </xs:simpleType>

 <!-- next lines for restrictions of the values. Remove not needed ones, Multiple restrictiontypes possible -->

 <xs:pattern value="&RESTRICTIONVALUE;"/>

 <!-- ... xs:minInclusive, xs:maxInclusive, xs:minExclusive, xs:maxExclusive, xs:length, xs:minLength, xs:maxLength,

xs:pattern -->

 <xs:maxLength value="&RESTRICTIONVALUE;"/>

 <!-- end of lines only for restrictions of the values -->

 </xs:restriction>

 </xs:simpleType>

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 41 of 54
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

 <!--********************** -->

 <!-- Ontology based IWK Complex Types -->

 <!--********************** -->

 <xs:complexType name="&TYPENAME_n;">

 <xs:sequence>

 <!-- should include all classes:Variable that are in the range of object property:hasSubStructure -->

 <xs:element name="&VARIABLENAME_1;" type=" obi:&TYPENAME_2;"/>

 <!-- ... -->

 <xs:element name="&VARIABLENAME_n;" type=" obi:&TYPENAME_3;"/>

 </xs:sequence>

 </xs:complexType>

</xs:schema>

7.2.4 XSD template for sub-classes of Base Ontology class: Operation

Specific XSD definition for class:Operation to be substituted at the placeholder in the XSD skeleton in clause 7.2.1.2.

The value of attribute containerDefinition of the specialization of the <flexContainer> shall be set as specified in

table 1. Example: <xs:element name="containerDefinition" type="//m2m.service.com/IN-CSE-

0001/bigFatCse/name_of_IPE_AE/ww.XYZ.com_WashingMachines /testOperation.xsd" />.

Table 7: Template definition of a <flexContainer> for Operation

<?xml version="1.0" encoding="UTF-8"?>

<!--

Copyright Notification

The oneM2M Partners authorize you to copy this document, provided that you retain all copyright and other proprietary notices

contained in the original materials on any copies of the materials and that you comply strictly with these terms.

This copyright permission does not constitute an endorsement of the products or services, nor does it encompass the granting of

any patent rights. The oneM2M Partners assume no responsibility for errors or omissions in this document.

© 2016, oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC). All rights reserved.

Notice of Disclaimer & Limitation of Liability

The information provided in this document is directed solely to professionals who have the appropriate degree of experience to

understand

and interpret its contents in accordance with generally accepted engineering or other professional standards and applicable

regulations.

No recommendation as to products or vendors is made or should be implied.

NO REPRESENTATION OR WARRANTY IS MADE THAT THE INFORMATION IS TECHNICALLY ACCURATE OR

SUFFICIENT OR CONFORMS TO ANY STATUTE,

GOVERNMENTAL RULE OR REGULATION, AND FURTHER, NO REPRESENTATION OR WARRANTY IS MADE OF

MERCHANTABILITY OR FITNESS FOR ANY

PARTICULAR PURPOSE OR AGAINST INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS.

NO oneM2M PARTNER TYPE 1 SHALL BE LIABLE, BEYOND THE AMOUNT OF ANY SUM RECEIVED IN

PAYMENT BY THAT PARTNER FOR THIS DOCUMENT, WITH RESPECT TO

ANY CLAIM, AND IN NO EVENT SHALL oneM2M BE LIABLE FOR LOST PROFITS OR OTHER INCIDENTAL OR

CONSEQUENTIAL DAMAGES.

oneM2M EXPRESSLY ADVISES ANY AND ALL USE OF OR RELIANCE UPON THIS INFORMATION PROVIDED IN

THIS DOCUMENT IS AT THE RISK OF THE USER.

-->

<!DOCTYPE placeholders [<!-- ==== examples; see description in table 1 ==== -->

<!ENTITY XSDSTORAGE "ww.XYZ.com_WashingMachines"> <!-- Example targetNamespace value -->

<!ENTITY OPERATION "testOperation"> <!-- Example name of operation defined in this file -->

<!ENTITY OPERATIONINPUT_1 "oip_1"> <!-- Example name of operationInput of this service -->

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 42 of 54
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

<!ENTITY OPERATIONINPUT_n "oip_n"> <!-- Example name of operationInput of this service -->

<!ENTITY OPERATIONOUTPUT_1 "oop_1"> <!-- Example name of operationOutput of this service -->

<!ENTITY OPERATIONOUTPUT_n "oop_n"> <!-- Example name of operationOutput of this service -->

<!ENTITY TYPENAME_1 "oip_1Type"> <!-- Example type name (of operationInput) -->

<!ENTITY TYPENAME_2 "variablename_1Type"> <!-- Example type name (of sub-structure) -->

<!ENTITY TYPENAME_3 "variablename_3Type"> <!-- Example type name (of sub-structure) -->

<!ENTITY TYPENAME_n " oop_nType "> <!-- Example type name (of operationOutput) -->

<!ENTITY VARIABLENAME_1 "variablename_1"> <!-- Example variable name (of sub-structure) -->

<!ENTITY VARIABLENAME_n "variablename_n"> <!-- Example variable name (of sub-structure) -->

<!ENTITY SIMPLEDATATYPE "xs:integer"> <!-- Example simple datatype -->

<!ENTITY RESTRICTIONVALUE "100"> <!-- Example value of a type restriction -->

]>

<xs:schema xmlns="http://www.w3.org/2001/XMLSchema" targetNamespace="&XSDSTORAGE;"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:m2m="http://www.onem2m.org/xml/protocols"

 xmlns:obi="&XSDSTORAGE;"

 elementFormDefault="unqualified" attributeFormDefault="unqualified">

 <xs:import namespace="http://www.onem2m.org/xml/protocols" schemaLocation="CDT-semanticDescriptor-v3_0_0.xsd"/>

 <xs:import namespace="http://www.onem2m.org/xml/protocols" schemaLocation="CDT-subscription-v3_0_0.xsd"/>

 <!-- for operations no includes needed from obi: namespace -->

 <xs:element name="&OPERATION;" substitutionGroup="m2m:sg_flexContainerResource">

 <xs:complexType>

 <xs:complexContent>

 <!-- Inherit Common Attributes from data type "flexContainerResource" -->

 <xs:extension base="m2m:flexContainerResource">

 <xs:sequence>

 <!-- Resource Specific Attributes for operations-->

 <!-- all OperationInput- and Outputs are listed here as custom attributes -->

 <xs:element name="&OPERATIONINPUT_1;" type=" obi:&TYPENAME_1;" minOccurs="0"/>

 <xs:element name="&OPERATIONOUTPUT_1;" type=" obi:&TYPENAME_n;" minOccurs="0"/>

 <!-- ... -->

 <xs:element name="&OPERATIONINPUT_n;" type=" obi:&TYPENAME_1;" minOccurs="0"/>

 <xs:element name="&OPERATIONOUTPUT_n;" type=" obi:&TYPENAME_n;" minOccurs="0"/>

 <!-- Child Resources -->

 <xs:choice minOccurs="0" maxOccurs="1">

 <xs:element name="childResource" type="m2m:childResourceRef" minOccurs="1"

maxOccurs="unbounded"/>

 <xs:choice minOccurs="1" maxOccurs="unbounded">

 <!-- Child Resource for Operations that have OperationOutputs is an Operation of the same type -->

 <xs:element ref="&OPERATION;"/>

 <!-- Common Child Resources -->

 <xs:element ref="m2m:semanticDescriptor"/>

 <xs:element ref="m2m:subscription"/>

 </xs:choice>

 </xs:choice>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 </xs:element>

 <!-- types used for OperationInputs and -Outputs of this Operation -->

 <!-- ********************** -->

 <!-- Ontology based IWK Simple Types -->

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 43 of 54
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

 <!-- ********************** -->

 <xs:simpleType name="&TYPENAME_1;">

 <xs:restriction base="&SIMPLEDATATYPE;"/>

 </xs:simpleType>

 <xs:simpleType name="&TYPENAME_2;">

 <xs:restriction base="&SIMPLEDATATYPE;">

 <!-- next lines for restrictions of the values. Remove not needed ones, Multiple restriction types possible -->

 <xs:minInclusive value="&RESTRICTIONVALUE;"/>

 <!-- ... xs:minInclusive, xs:maxInclusive, xs:minExclusive, xs:maxExclusive, xs:length, xs:minLength, xs:maxLength,

xs:pattern -->

 <xs:maxInclusive value="&RESTRICTIONVALUE;"/>

 <!-- end of lines only for restrictions of the values -->

 </xs:restriction>

 </xs:simpleType>

 <!--********************** -->

 <!-- Ontology based IWK Simple Types (Lists)-->

 <!--********************** -->

 <xs:simpleType name="&TYPENAME_3;">

 <xs:restriction>

 <xs:simpleType>

 <xs:list>

 <xs:simpleType>

 <xs:restriction base="&SIMPLEDATATYPE;">

 </xs:restriction>

 </xs:simpleType>

 </xs:list>

 </xs:simpleType>

 <!-- next lines for restrictions of the values. Remove not needed ones, Multiple restrictiontypes possible -->

 <xs:pattern value="&RESTRICTIONVALUE;"/>

 <!-- ... xs:minInclusive, xs:maxInclusive, xs:minExclusive, xs:maxExclusive, xs:length, xs:minLength, xs:maxLength,

xs:pattern -->

 <xs:maxLength value="&RESTRICTIONVALUE;"/>

 <!-- end of lines only for restrictions of the values -->

 </xs:restriction>

 </xs:simpleType>

 <!--********************** -->

 <!-- Ontology based IWK Complex Types -->

 <!--********************** -->

 <xs:complexType name="&TYPENAME_n;">

 <xs:sequence>

 <!-- should include all classes:Variable that are in the range of object property:hasSubStructure -->

 <xs:element name="&VARIABLENAME_1;" type=" obi:&TYPENAME_2;"/>

 <!-- ... -->

 <xs:element name="&VARIABLENAME_n;" type=" obi:&TYPENAME_3;"/>

 </xs:sequence>

 </xs:complexType>

</xs:schema>

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 44 of 54
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Annex A (informative):

Example for ontology based interworking

A.1 Overview

This example extends the example - a (simplified) washing machine - of clause B.1.3.3 of oneM2M TS-0012 [3].

However in contrast to oneM2M TS-0012 in this example it is assumed that the washing machine is not a 'native'

oneM2M application but is interworked with the oneM2M System via ontology based interworking.

In contrast to oneM2M TS-0012 the semantic description (contained in the descriptor attribute of the

<semanticDescriptor> resource) is not of interest but rather the structure of the specialized <flexContainer> resources

to which these <semanticDescriptor>s belong.

Also Functions and Commands (which are only described in RDF form in the sematic descriptors) are not considered,

but only Services, Input- / OutputDatapoints and Operations, which are the resources containing data for

communication with the washing machine are handled here.

The example given here is a (simplified) washing machine, based on class:WashingMachine, specified in SAREF [i.2].

It is assumed the washing machine has been manufactured by manufacturer XYZ.

The ontology that describes XYZ washingmachines is identified by the IRI: http://www.XYZ.com/WashingMachines.

It is assumed the XYZ washing machines are compliant with SAREF. Also, as described in clause B.1 of oneM2M TS-

0012 [3], SAREF is compliant with the oneM2M base ontology.

That implies that every class/property of the XYZ ontology is either a subclass/sub-property of SAREF or - if no

suitable class/property exists in SAREF - is a subclass/sub-property of the base ontology.

The classes/properties that are taken from SAREF are prefixed with: "saref:"

The classes/properties that are taken from XYZ ontology are prefixed with: "XYZ:"

The classes/properties that are taken from the base ontology are prefixed with: "BO:"

• The model of the type of washing machine is class XYZ:XYZ_Cool

- which is a sub-class of class saref:WashingMachine

▪ which in turn is subclass of BO:InterworkedDevice

• The state of the washing machine is given by XYZ:WashingMachineStatus that can take the values

"WASHING" or "STOPPED" or "ERROR".

- XYZ:WashingMachineStatus is a sub-class of saref:state

▪ which in turn is subclass of BO:OutputDataPoint

• This WashingMachineStatus is provided as an the OutputDataPoint of a service XYZ:MonitorService which

exposes the MonitoringFunction to the network.

- Class XYZ:MonitorService is a sub-class of saref:Service

▪ which in turn is subclass of BO:Service

• The related function of the washing machine is described by class XYZ:MonitoringFunction.

- Class XYZ:MonitoringFunction is a sub-class of saref: Function

▪ which in turn is subclass of BO:Function

• The function of the washing machine to control the washing machine is in class XYZ:StartStopFunction which

has three commands: ON_Command, OFF_Command, Toggle_Command.

http://www.xyz.com/WashingMachines

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 45 of 54
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

NOTE: Since classes for Functions and Commands are not needed for interworking as they only appear in the

RDF description in <sematicDescriptor> resources the XYZ:MonitoringFunction and

XYZ:StartStopFunction are not further considered here. They are, however, described in the related

example of clause B.1.3.3 of oneM2M TS-0012 [3].

• The related service of the washing machine that represents that XYZ:StartStopFunction is class:

XYZ:SwitchOnService. It has:

an InputDataPoint: XYZ:BinaryInput (to expose command ON_Command and OFF_Command) and

an Operation: XYZ:ToggleBinary (to expose command Toggle_Command)

- Class XYZ: SwitchOnService is a sub-class of saref:SwitchOnService

▪ which in turn is subclass of BO:Service

• InputDataPoint: XYZ:BinaryInput is a sub-class of BO:InputDataPoint

• Operation: XYZ:ToggleBinary is a sub-class of BO:Operation

• XYZ describes this type of washing machine with a XYZ:Description as "Very cool Washing Machine"

- XYZ:Description os a sub-class of BO:ThingProperty

The following figure shows the relationship of the ontology that describes model XYZ_cool of XYZ washingmachines

with the oneM2M base ontology.

Service

Operation

Output
DataPoint

Input
DataPoint

Toggle
Binary

Binary
Input

Monitor
Service

WashingMa
chineStatus

has
Service

has
Input

DataPoint

has
Output

DataPoint
has

Operation

SimpleType
VariableIs-a

Is-a

Is-a Is-aIs-aIs-a

<oneM2M:hasDataType>xs:string</oneM2M:hasDataType>
<oneM2M:hasDataRestriction_pattern>"WASHING|STOPPED
|ERROR" </oneM2M:hasDataRestriction_pattern>

offers

Is-a

has
Input

Parameter

has
Output

Parameter

Is-a Is-a

<oneM2M:hasDataType>xs:binary</oneM2M:hasDataType>

SwitchOn
Service

oneM2M base
ontology

ontology of
XYZ washing
machines

Is-a

Thing
Property

hasThing
Property

Is-a

Description

has
Description

Is-a Is-a

Interworked
Device

XYZ_Cool
washing
machine

<oneM2M:hasDataType>xs:string</oneM2M:hasDataType>

Figure 7: Relationship of the ontology that describes model XYZ_cool
of XYZ washingmachines with the oneM2M base ontology

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 46 of 54
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

A.2 XSDs created by the IPE

A.2.1 XSD storage <container>

According to clause 7.2.1.1 the IPE creates a <container> resource that acts as a XSD-storage and that is a child

resource of the IPE's <AE>.

Derived from the IRI of the ontology: http://www.XYZ.com/WashingMachines, following the rule given in table 1 of

clause 7.2.1.2 the resource name for that <container> resource (in the table the placeholder is called

&XSDSTORAGE;) will be www.XYZ.com_WashingMachines.

The IPE will also create <contentInstance> resources as child-resources of the XSD-storage <container> resource with

the following resource names (see &XSDFILE; in table 1 of 7.2.1.2):

• XYZ_Cool.xsd … contains the XSD for the <flexContainer> resource of the Interworked Device type

XYZ_Cool

• SwitchOnService.xsd … contains the XSD for the <flexContainer> resource of the Service type

SwitchOnService

• MonitorService.xsd … contains the XSD for the <flexContainer> resource of the Service type MonitorService

• ToggleBinary.xsd … contains the XSD for the <flexContainer> resource of the Operation type ToggleBinary

When the IPE crates a new <flexContainer> specialization of these types then the attribute containerDefinition will

contain the absolute, hierarchical address of the <contentinstance> that contains the related XSD.

E.g. for the SwitchOnService it could have the value:

//m2m.service.com/IN-CSE0001/bigFatCse/name_of_IPE_AE/ww.XYZ.com_WashingMachines/SwitchOnService.xsd

A.2.2 XSD for the Interworked Device type XYZ_Cool

Following the principles of clause 7.2.2 an Interworked Device is represented as <flexContainer>.

According to the the convention in table 1 of clause 7.2.1.2 the placeholders and their substitutions that are needed for a

<flexContainer>, representing an Interworked Device are:

• &XSDSTORAGE; is substituted by www.XYZ.com_WashingMachines

• &DEVICE; is substituted by XYZ_Cool

• &SERVICE_1; is substituted by SwitchOnService

• &SERVICE_2; is substituted by MonitorService

• THINGPROPERTY_1; is substituted by Description

• &TYPENAME_1; is substituted by DescriptionType

• &SIMPLEDATATYPE; is substituted by xs:string

The XSD in the <contentInstance> with resource name XYZ_Cool.xsd will contain:

<?xml version="1.0" encoding="UTF-8"?>

<!--

Copyright Notification

The oneM2M Partners authorize you to copy this document, provided that you retain all copyright and other proprietary notices

contained in the original materials on any copies of the materials and that you comply strictly with these terms.

This copyright permission does not constitute an endorsement of the products or services, nor does it encompass the granting of

any patent rights. The oneM2M Partners assume no responsibility for errors or omissions in this document.

http://www.xyz.com/WashingMachines

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 47 of 54
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

© 2016, oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC). All rights reserved.

Notice of Disclaimer & Limitation of Liability

The information provided in this document is directed solely to professionals who have the appropriate degree of experience to

understand

and interpret its contents in accordance with generally accepted engineering or other professional standards and applicable

regulations.

No recommendation as to products or vendors is made or should be implied.

NO REPRESENTATION OR WARRANTY IS MADE THAT THE INFORMATION IS TECHNICALLY ACCURATE OR

SUFFICIENT OR CONFORMS TO ANY STATUTE,

GOVERNMENTAL RULE OR REGULATION, AND FURTHER, NO REPRESENTATION OR WARRANTY IS MADE OF

MERCHANTABILITY OR FITNESS FOR ANY

PARTICULAR PURPOSE OR AGAINST INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS.

NO oneM2M PARTNER TYPE 1 SHALL BE LIABLE, BEYOND THE AMOUNT OF ANY SUM RECEIVED IN PAYMENT

BY THAT PARTNER FOR THIS DOCUMENT, WITH RESPECT TO

ANY CLAIM, AND IN NO EVENT SHALL oneM2M BE LIABLE FOR LOST PROFITS OR OTHER INCIDENTAL OR

CONSEQUENTIAL DAMAGES.

oneM2M EXPRESSLY ADVISES ANY AND ALL USE OF OR RELIANCE UPON THIS INFORMATION PROVIDED IN

THIS DOCUMENT IS AT THE RISK OF THE USER.

-->

<xs:schema xmlns="http://www.w3.org/2001/XMLSchema" targetNamespace="www.XYZ.com_WashingMachines"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:m2m="http://www.onem2m.org/xml/protocols"

 xmlns:obi="www.XYZ.com_WashingMachines"

 elementFormDefault="unqualified" attributeFormDefault="unqualified">

 <xs:import namespace="http://www.onem2m.org/xml/protocols" schemaLocation="CDT-semanticDescriptor-v3_0_0.xsd"/>

 <xs:import namespace="http://www.onem2m.org/xml/protocols" schemaLocation="CDT-subscription-v3_0_0.xsd"/>

 <!-- include XSDs of child resources: (sub-)Devices and Services used in this Device -->

 <xs:include schemaLocation="SwitchOnService.xsd" />

 <xs:include schemaLocation="MonitorService.xsd" />

 <xs:element name="XYZ_Cool" substitutionGroup="m2m:sg_flexContainerResource">

 <xs:complexType>

 <xs:complexContent>

 <!-- Inherit Common Attributes from data type "flexContainerResource" -->

 <xs:extension base="m2m:flexContainerResource">

 <xs:sequence>

 <!-- Resource Specific Attributes -->

 <!-- nodeLink as custom attribute -->

 <xs:element name="nodeLink" type="xs:anyURI" minOccurs="0"/>

 <!-- all OperationInput- and Outputs are listed here as custom attributes -->

 <xs:element name="Description" type=" obi:DescriptionType" minOccurs="0"/>

 <!-- Child Resources -->

 <xs:choice minOccurs="0" maxOccurs="1">

 <xs:element name="childResource" type="m2m:childResourceRef" minOccurs="1" maxOccurs="unbounded"/>

 <xs:choice minOccurs="1" maxOccurs="unbounded">

 <!-- Device specific Child Resources (sub-Devices of the Device) -->

 <!-- Device specific Child Resources (Services of the Device) -->

 <xs:element ref=" obi:SwitchOnService"/>

 <xs:element ref=" obi:MonitorService"/>

 <!-- Common Child Resources -->

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 48 of 54
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

 </xs:choice>

 </xs:choice>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 </xs:element>

 <!-- types used for ThingProperties of this Device -->

 <!-- ********************** -->

 <!-- Ontology based IWK Simple Types -->

 <!-- ********************** -->

 <xs:simpleType name="DescriptionType">

 <xs:restriction base="xs:string"/>

 </xs:simpleType>

</xs:schema>

A.2.3 XSD for the Service type SwitchOnService

Following the principles of clause 7.2.3 a Service is represented as <flexContainer>.

According to the the convention in table 1 of clause 7.2.1.2 the placeholders and their substitutions that are needed for a

<flexContainer>, representing an Interworked Device are:

• &XSDSTORAGE; is substituted by www.XYZ.com_WashingMachines

• &SERVICE; is substituted by SwitchOnService

• &OPERATION_1; is substituted by ToggleBinary

• &INPUTDATAPOINT_1; is substituted by BinaryInput

• &TYPENAME_1; is substituted by ToggleBinaryType

• &SIMPLEDATATYPE; is substituted by xs:boolean

The XSD in the <contentInstance> with resource name SwitchOnService.xsd will contain:

<?xml version="1.0" encoding="UTF-8"?>

<!--

Copyright Notification

The oneM2M Partners authorize you to copy this document, provided that you retain all copyright and other proprietary notices

contained in the original materials on any copies of the materials and that you comply strictly with these terms.

This copyright permission does not constitute an endorsement of the products or services, nor does it encompass the granting of

any patent rights. The oneM2M Partners assume no responsibility for errors or omissions in this document.

© 2016, oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC). All rights reserved.

Notice of Disclaimer & Limitation of Liability

The information provided in this document is directed solely to professionals who have the appropriate degree of experience to

understand

and interpret its contents in accordance with generally accepted engineering or other professional standards and applicable

regulations.

No recommendation as to products or vendors is made or should be implied.

NO REPRESENTATION OR WARRANTY IS MADE THAT THE INFORMATION IS TECHNICALLY ACCURATE OR

SUFFICIENT OR CONFORMS TO ANY STATUTE,

GOVERNMENTAL RULE OR REGULATION, AND FURTHER, NO REPRESENTATION OR WARRANTY IS MADE OF

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 49 of 54
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

MERCHANTABILITY OR FITNESS FOR ANY

PARTICULAR PURPOSE OR AGAINST INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS.

NO oneM2M PARTNER TYPE 1 SHALL BE LIABLE, BEYOND THE AMOUNT OF ANY SUM RECEIVED IN PAYMENT

BY THAT PARTNER FOR THIS DOCUMENT, WITH RESPECT TO

ANY CLAIM, AND IN NO EVENT SHALL oneM2M BE LIABLE FOR LOST PROFITS OR OTHER INCIDENTAL OR

CONSEQUENTIAL DAMAGES.

oneM2M EXPRESSLY ADVISES ANY AND ALL USE OF OR RELIANCE UPON THIS INFORMATION PROVIDED IN

THIS DOCUMENT IS AT THE RISK OF THE USER.

-->

<xs:schema xmlns="http://www.w3.org/2001/XMLSchema" targetNamespace="www.XYZ.com_WashingMachines"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:m2m="http://www.onem2m.org/xml/protocols"

 xmlns:obi="www.XYZ.com_WashingMachines"

 elementFormDefault="unqualified" attributeFormDefault="unqualified">

 <xs:import namespace="http://www.onem2m.org/xml/protocols" schemaLocation="CDT-semanticDescriptor-v3_0_0.xsd"/>

 <xs:import namespace="http://www.onem2m.org/xml/protocols" schemaLocation="CDT-subscription-v3_0_0.xsd"/>

 <!-- include XSDs of child resources: Operations used in this Service -->

 <xs:include schemaLocation="ToggleBinary.xsd" />

 <xs:element name="SwitchOnService" substitutionGroup="m2m:sg_flexContainerResource">

 <xs:complexType>

 <xs:complexContent>

 <!-- Inherit Common Attributes from data type "flexContainerResource" -->

 <xs:extension base="m2m:flexContainerResource">

 <xs:sequence>

 <!-- Resource Specific Attributes -->

 <!-- all Input- and OutputDatapoints are listed here as custom attributes -->

 <xs:element name="BinaryInput" type=" obi:BinaryInputType" minOccurs="0"/>

 <!-- Child Resources -->

 <xs:choice minOccurs="0" maxOccurs="1">

 <xs:element name="childResource" type="m2m:childResourceRef" minOccurs="1" maxOccurs="unbounded"/>

 <xs:choice minOccurs="1" maxOccurs="unbounded">

 <!-- Service specific Child Resources (Operations of the Service) -->

 <xs:element ref=" obi:ToggleBinary"/>

 <!-- Common Child Resources -->

 <xs:element ref="m2m:semanticDescriptor"/>

 <xs:element ref="m2m:subscription"/>

 </xs:choice>

 </xs:choice>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 </xs:element>

 <!-- types used for Datapoints of this Service -->

 <!-- ********************** -->

 <!-- Ontology based IWK Simple Types -->

 <!-- ********************** -->

 <xs:simpleType name=" BinaryInputType ">

 <xs:restriction base="xs:boolean"/>

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 50 of 54
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

 </xs:simpleType>

</xs:schema>

A.2.4 XSD for the Service type MonitorService

Following the principles of clause 7.2.3 a Service is represented as <flexContainer>.

According to the the convention in table 1 of clause 7.2.1.2 the placeholders and their substitutions that are needed for a

<flexContainer>, representing an Interworked Device are:

• &XSDSTORAGE; is substituted by www.XYZ.com_WashingMachines

• &SERVICE; is substituted by MonitorService

• &OUTPUTDATAPOINT_1; is substituted by WashingMachineStatus

• &TYPENAME_1; is substituted by WashingMachineStatusType

• &SIMPLEDATATYPE; is substituted by xs:string

• &RESTRICTIONVALUE; is substituted by "WASHING"|"STOPPED"|"ERROR"

The XSD in the <contentInstance> with resource name MonitorService.xsd will contain:

<?xml version="1.0" encoding="UTF-8"?>

<!--

Copyright Notification

The oneM2M Partners authorize you to copy this document, provided that you retain all copyright and other proprietary notices

contained in the original materials on any copies of the materials and that you comply strictly with these terms.

This copyright permission does not constitute an endorsement of the products or services, nor does it encompass the granting of

any patent rights. The oneM2M Partners assume no responsibility for errors or omissions in this document.

© 2016, oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC). All rights reserved.

Notice of Disclaimer & Limitation of Liability

The information provided in this document is directed solely to professionals who have the appropriate degree of experience to

understand

and interpret its contents in accordance with generally accepted engineering or other professional standards and applicable

regulations.

No recommendation as to products or vendors is made or should be implied.

NO REPRESENTATION OR WARRANTY IS MADE THAT THE INFORMATION IS TECHNICALLY ACCURATE OR

SUFFICIENT OR CONFORMS TO ANY STATUTE,

GOVERNMENTAL RULE OR REGULATION, AND FURTHER, NO REPRESENTATION OR WARRANTY IS MADE OF

MERCHANTABILITY OR FITNESS FOR ANY

PARTICULAR PURPOSE OR AGAINST INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS.

NO oneM2M PARTNER TYPE 1 SHALL BE LIABLE, BEYOND THE AMOUNT OF ANY SUM RECEIVED IN PAYMENT

BY THAT PARTNER FOR THIS DOCUMENT, WITH RESPECT TO

ANY CLAIM, AND IN NO EVENT SHALL oneM2M BE LIABLE FOR LOST PROFITS OR OTHER INCIDENTAL OR

CONSEQUENTIAL DAMAGES.

oneM2M EXPRESSLY ADVISES ANY AND ALL USE OF OR RELIANCE UPON THIS INFORMATION PROVIDED IN

THIS DOCUMENT IS AT THE RISK OF THE USER.

-->

<xs:schema xmlns="http://www.w3.org/2001/XMLSchema" targetNamespace="www.XYZ.com_WashingMachines"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:m2m="http://www.onem2m.org/xml/protocols"

 xmlns:obi="www.XYZ.com_WashingMachines"

 elementFormDefault="unqualified" attributeFormDefault="unqualified">

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 51 of 54
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

 <xs:import namespace="http://www.onem2m.org/xml/protocols" schemaLocation="CDT-semanticDescriptor-v3_0_0.xsd"/>

 <xs:import namespace="http://www.onem2m.org/xml/protocols" schemaLocation="CDT-subscription-v3_0_0.xsd"/>

 <xs:element name="MonitorService" substitutionGroup="m2m:sg_flexContainerResource">

 <xs:complexType>

 <xs:complexContent>

 <!-- Inherit Common Attributes from data type "flexContainerResource" -->

 <xs:extension base="m2m:flexContainerResource">

 <xs:sequence>

 <!-- Resource Specific Attributes -->

 <!-- all Input- and OutputDatapoints are listed here as custom attributes -->

 <xs:element name="WashingMachineStatus" type="obi:WashingMachineStatusType" minOccurs="0"/>

 <!-- Child Resources -->

 <xs:choice minOccurs="0" maxOccurs="1">

 <xs:element name="childResource" type="m2m:childResourceRef" minOccurs="1" maxOccurs="unbounded"/>

 <xs:choice minOccurs="1" maxOccurs="unbounded">

 <!-- Service specific Child Resources (Operations of the Service) -->

 <!-- Common Child Resources -->

 <xs:element ref="m2m:semanticDescriptor"/>

 <xs:element ref="m2m:subscription"/>

 </xs:choice>

 </xs:choice>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 </xs:element>

 <!-- types used for Datapoints of this Service -->

 <!-- ********************** -->

 <!-- Ontology based IWK Simple Types -->

 <!-- ********************** -->

 <xs:simpleType name="WashingMachineStatusType">

 <xs:restriction base="xs:string">

 <!-- next lines for restrictions of the values. Remove not needed ones, Multiple restrictiontypes possible -->

 <xs:pattern value= "WASHING|STOPPED|ERROR"/>

 </xs:restriction>

 </xs:simpleType>

</xs:schema>

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 52 of 54
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

A.2.5 XSD for the Operation type ToggleBinary

Following the principles of clause 7.2.3 a Service is represented as <flexContainer>.

According to the the convention in table 1 of clause 7.2.1.2 the placeholders and their substitutions that are needed for a

<flexContainer>, representing an Interworked Device are:

• &XSDSTORAGE; is substituted by www.XYZ.com_WashingMachines

• &OPERATION; is substituted by ToggleBinary

The XSD in the <contentInstance> with resource name ToggleBinary.xsd will contain:

<?xml version="1.0" encoding="UTF-8"?>

<!--

Copyright Notification

The oneM2M Partners authorize you to copy this document, provided that you retain all copyright and other proprietary notices

contained in the original materials on any copies of the materials and that you comply strictly with these terms.

This copyright permission does not constitute an endorsement of the products or services, nor does it encompass the granting of

any patent rights. The oneM2M Partners assume no responsibility for errors or omissions in this document.

© 2016, oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC). All rights reserved.

Notice of Disclaimer & Limitation of Liability

The information provided in this document is directed solely to professionals who have the appropriate degree of experience to

understand

and interpret its contents in accordance with generally accepted engineering or other professional standards and applicable

regulations.

No recommendation as to products or vendors is made or should be implied.

NO REPRESENTATION OR WARRANTY IS MADE THAT THE INFORMATION IS TECHNICALLY ACCURATE OR

SUFFICIENT OR CONFORMS TO ANY STATUTE,

GOVERNMENTAL RULE OR REGULATION, AND FURTHER, NO REPRESENTATION OR WARRANTY IS MADE OF

MERCHANTABILITY OR FITNESS FOR ANY

PARTICULAR PURPOSE OR AGAINST INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS.

NO oneM2M PARTNER TYPE 1 SHALL BE LIABLE, BEYOND THE AMOUNT OF ANY SUM RECEIVED IN PAYMENT

BY THAT PARTNER FOR THIS DOCUMENT, WITH RESPECT TO

ANY CLAIM, AND IN NO EVENT SHALL oneM2M BE LIABLE FOR LOST PROFITS OR OTHER INCIDENTAL OR

CONSEQUENTIAL DAMAGES.

oneM2M EXPRESSLY ADVISES ANY AND ALL USE OF OR RELIANCE UPON THIS INFORMATION PROVIDED IN

THIS DOCUMENT IS AT THE RISK OF THE USER.

-->

<xs:schema xmlns="http://www.w3.org/2001/XMLSchema" targetNamespace="www.XYZ.com_WashingMachines"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:m2m="http://www.onem2m.org/xml/protocols"

 xmlns:obi="www.XYZ.com_WashingMachines"

 elementFormDefault="unqualified" attributeFormDefault="unqualified">

 <xs:import namespace="http://www.onem2m.org/xml/protocols" schemaLocation="CDT-semanticDescriptor-v3_0_0.xsd"/>

 <xs:import namespace="http://www.onem2m.org/xml/protocols" schemaLocation="CDT-subscription-v3_0_0.xsd"/>

 <!-- for operations no includes needed from obi: namespace -->

 <xs:element name="ToggleBinary" substitutionGroup="m2m:sg_flexContainerResource">

 <xs:complexType>

 <xs:complexContent>

 <!-- Inherit Common Attributes from data type "flexContainerResource" -->

 <xs:extension base="m2m:flexContainerResource">

 <xs:sequence>

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 53 of 54
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

 <!-- Resource Specific Attributes for operations-->

 <!-- all OperationInput- and Outputs are listed here as custom attributes -->

 <!-- Child Resources -->

 <xs:choice minOccurs="0" maxOccurs="1">

 <xs:element name="childResource" type="m2m:childResourceRef" minOccurs="1" maxOccurs="unbounded"/>

 <xs:choice minOccurs="1" maxOccurs="unbounded">

 <!-- Child Resource for Operations that have OperationOutputs is an Operation of the same type -->

 <!-- Common Child Resources -->

 <xs:element ref="m2m:semanticDescriptor"/>

 <xs:element ref="m2m:subscription"/>

 </xs:choice>

 </xs:choice>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 </xs:element>

 <!-- types used for OperationInputs and -Outputs of this Operation -->

</xs:schema>

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 54 of 54
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

History

Publication history

V3.0.2 April 2018 Release 3 - Publication

	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Conventions
	5 Introduction to Ontology based Interworking (informative)
	5.1 Basic concepts of Ontology based Interworking
	5.1.1 Ontology based Interworking vs. Specific interworking
	5.1.2 Use of ontologies for Ontology based Interworking with Area Networks

	5.2 Using Ontology based Interworking with Device Abstraction
	5.2.1 General description
	5.2.2 An example, involving ZigBee, HAIM and SAREF

	5.3 Priciples of data flows
	5.3.1 Preconditions on the communicating entity
	5.3.2 Data flows for communicating with the IPE using DataPoints of a Service
	5.3.3 Data flows for communicating with the IPE using Operations of a Service

	6 Functional specification of communication with the Ontology based Interworking IPE
	6.1 oneM2M resources for IPE communication
	6.1.1 General design principles
	6.1.2 Resource structure for modelling devices, sub-devices, services and operations

	6.2 Specification of the IPE for Ontology based Interworking
	6.2.1 Initialization of the Ontology based Interworking IPE
	6.2.1.1 General functionality of a Ontology based Interworking IPE
	6.2.1.2 Initialization sequence of a Ontology based Interworking IPE

	6.2.2 Interworked Device and Service discovery
	6.2.2.1 General handling of Interworked Device discovery
	6.2.2.2 Creation of resources for the Proxied Device
	6.2.2.2.1 General on the creation of resources for the Proxied Device by the IPE
	6.2.2.2.2 Creation of resources for the Proxied Device when Interworked Devices are represented as <flexContainer>s
	6.2.2.2.3 Creation of resources for the Proxied Device when Interworked Devices are represented as <AE>s

	6.2.2.3 Creation of resources for sub-devices
	6.2.2.4 Creation of resources for Services
	6.2.2.5 Creation of resources for operations of a service of a device
	6.2.2.5.1 Introduction
	6.2.2.5.2 Creation of resources for operation invocation
	6.2.2.5.3 Creation of resources for returning operation results

	6.2.2.6 Subscription to the created resources

	6.2.3 Handling of DataPoints by the IPE
	6.2.4 Handling of Operations by the IPE
	6.2.5 Removing of resources for Proxied Devices

	7 Rules for creation of XSDs from ontologies
	7.1 General information
	7.2 XSD creation rules
	7.2.1 General rules
	7.2.1.1 General principle for creating XSDs
	7.2.1.2 Parameters for XSD templates
	7.2.1.3 Data typing for Variables
	7.2.1.3.1 Information on datatypes contained in the ontology
	7.2.1.3.2 Construction of Simple Data Types
	7.2.1.3.3 List Data Types
	7.2.1.3.4 Structured Data Types

	7.2.2 XSD template for sub-classes of Base Ontology class: Device
	7.2.3 XSD template for sub-classes of Base Ontology class: Service
	7.2.4 XSD template for sub-classes of Base Ontology class: Operation
	Annex A (informative): Example for ontology based interworking

	A.1 Overview
	A.2 XSDs created by the IPE
	A.2.1 XSD storage <container>
	A.2.2 XSD for the Interworked Device type XYZ_Cool
	A.2.3 XSD for the Service type SwitchOnService
	A.2.4 XSD for the Service type MonitorService
	A.2.5 XSD for the Operation type ToggleBinary

	History

